scholarly journals How necessary is a fast testkit for mitigation of pandemic flu?

2009 ◽  
Vol 7 (48) ◽  
pp. 1033-1047 ◽  
Author(s):  
Juxin Chin ◽  
Geoffrey Koh ◽  
Dong-Yup Lee

It is widely feared that a novel, highly pathogenic, human transmissible influenza virus may evolve that could cause the next global pandemic. Mitigating the spread of such an influenza pandemic would require not only the timely administration of antiviral drugs to those infected, but also the implementation of suitable intervention policies for stunting the spread of the virus. Towards this end, mathematical modelling and simulation studies are crucial as they allow us to evaluate the predicted effectiveness of the various intervention policies before enforcing them. Diagnosis plays a vital role in the overall pandemic management framework by detecting and distinguishing the pathogenic strain from the less threatening seasonal strains and other influenza-like illnesses. This allows treatment and intervention to be deployed effectively, given limited antiviral supplies and other resources. However, the time required to design a fast and accurate testkit for novel strains may limit the role of diagnosis. Herein, we aim to investigate the cost and effectiveness of different diagnostic methods using a stochastic agent-based city-scale model, and then address the issue of whether conventional testing approaches, when used with appropriate intervention policies, can be as effective as fast testkits in containing a pandemic outbreak. We found that for mitigation purposes, fast and accurate testkits are not necessary as long as sufficient medication is given, and are generally recommended only when used with extensive contact tracing and prophylaxis. Additionally, in the event of insufficient medication and fast testkits, the use of slower, conventional testkits together with proper isolation policies while waiting for the diagnostic results can be an equally effective substitute.

Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 342
Author(s):  
Morgan G. Blevins ◽  
Alvaro Fernandez-Galiana ◽  
Milo J. Hooper ◽  
Svetlana V. Boriskina

The COVID-19 pandemic has made it abundantly clear that the state-of-the-art biosensors may not be adequate for providing a tool for rapid mass testing and population screening in response to newly emerging pathogens. The main limitations of the conventional techniques are their dependency on virus-specific receptors and reagents that need to be custom-developed for each recently-emerged pathogen, the time required for this development as well as for sample preparation and detection, the need for biological amplification, which can increase false positive outcomes, and the cost and size of the necessary equipment. Thus, new platform technologies that can be readily modified as soon as new pathogens are detected, sequenced, and characterized are needed to enable rapid deployment and mass distribution of biosensors. This need can be addressed by the development of adaptive, multiplexed, and affordable sensing technologies that can avoid the conventional biological amplification step, make use of the optical and/or electrical signal amplification, and shorten both the preliminary development and the point-of-care testing time frames. We provide a comparative review of the existing and emergent photonic biosensing techniques by matching them to the above criteria and capabilities of preventing the spread of the next global pandemic.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 29-35 ◽  
Author(s):  
PETER W. HART ◽  
DALE E. NUTTER

During the last several years, the increasing cost and decreasing availability of mixed southern hardwoods have resulted in financial and production difficulties for southern U.S. mills that use a significant percentage of hardwood kraft pulp. Traditionally, in the United States, hardwoods are not plantation grown because of the growth time required to produce a quality tree suitable for pulping. One potential method of mitigating the cost and supply issues associated with the use of native hardwoods is to grow eucalyptus in plantations for the sole purpose of producing hardwood pulp. However, most of the eucalyptus species used in pulping elsewhere in the world are not capable of surviving in the southern U.S. climate. This study examines the potential of seven different cold-tolerant eucalyptus species to be used as replacements for, or supplements to, mixed southern hardwoods. The laboratory pulping and bleaching aspects of these seven species are discussed, along with pertinent mill operational data. Selected mill trial data also are reviewed.


2020 ◽  
Vol 17 (8) ◽  
pp. 594-609
Author(s):  
Preetismita Borah ◽  
Vhatkar Dattatraya Shivling ◽  
Bimal Krishna Banik ◽  
Biswa Mohan Sahoo

In recent years, hybrid systems are gaining considerable attention owing to their various biological applications in drug development. Generally, hybrid molecules are constructed from different molecular entities to generate a new functional molecule with improved biological activities. There already exist a large number of naturally occurring hybrid molecules based on both non-steroid and steroid frameworks synthesized by nature through mixed biosynthetic pathways such as, a) integration of the different biosynthetic pathways or b) Carbon- Carbon bond formation between different components derived through different biosynthetic pathways. Multicomponent reactions are a great way to generate efficient libraries of hybrid compounds with high diversity. Throughout the scientific history, the most common factors developing technologies are less energy consumption and avoiding the use of hazardous reagents. In this case, microwave energy plays a vital role in chemical transformations since it involves two very essential criteria of synthesis, minimizing energy consumption required for heating and time required for the reaction. This review summarizes the use of microwave energy in the synthesis of steroidal and non-steroidal hybrid molecules and the use of multicomponent reactions.


Author(s):  
Ahmed RG

Background: The complications of the SARS-CoV-2 infection and its COVID-19 disease on mothers and their offspring are less known. Objective: The aim of this review was to determine the transmission, severity, complications of SARS-CoV-2 infection during the pregnancy. This review showed the influence of COVID-19 disease on the neonatal neurogenesis. Owing to no specific vaccines or medicines that were reported for the treatment of COVID-19 disease, this review suggested some control strategies like treatments (medicinal plants, antiviral therapy, cellular therapy, and immunotherapy), nutrition uptake, prevention, and recommendations. Discussion: This overview showed in severely states that SARS-CoV-2 infection during the early stage of pregnancy might increase the risk of stress, panic, and anxiety. This disorder can disturb the maternal immune system, and thus causing a neurodevelopmental disturbance. This hypothesis may be depending on the severity and intensity of the SARS-CoV-2 infection during pregnancy. However, vertical transmission of SARS-CoV-2 from dams to their fetuses is absent until now. Conclusion: During this global pandemic disease, maintaining safety during pregnancy, vaginal delivery, and breastfeeding may play a vital role in a healthy life for the offspring. Thus, international and national corporations should be continuing for perinatal management, particularly during the next pandemic or disaster time.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 608
Author(s):  
Danielle Burton ◽  
Suzanne Lenhart ◽  
Christina J. Edholm ◽  
Benjamin Levy ◽  
Michael L. Washington ◽  
...  

The 2014–2016 West African outbreak of Ebola Virus Disease (EVD) was the largest and most deadly to date. Contact tracing, following up those who may have been infected through contact with an infected individual to prevent secondary spread, plays a vital role in controlling such outbreaks. Our aim in this work was to mechanistically represent the contact tracing process to illustrate potential areas of improvement in managing contact tracing efforts. We also explored the role contact tracing played in eventually ending the outbreak. We present a system of ordinary differential equations to model contact tracing in Sierra Leonne during the outbreak. Using data on cumulative cases and deaths, we estimate most of the parameters in our model. We include the novel features of counting the total number of people being traced and tying this directly to the number of tracers doing this work. Our work highlights the importance of incorporating changing behavior into one’s model as needed when indicated by the data and reported trends. Our results show that a larger contact tracing program would have reduced the death toll of the outbreak. Counting the total number of people being traced and including changes in behavior in our model led to better understanding of disease management.


2017 ◽  
Vol 62 (3) ◽  
pp. 1443-1447 ◽  
Author(s):  
T. Maciąg ◽  
J. Wieczorek ◽  
B. Węcki

AbstractElectropolishing is electrochemical method used in metal working that has a vital role in production of medical apparatus, in food or electric industry. The purpose of this paper is to determine optimal current parameters and time required for conducting electropolishing process from the perspective of changes of surface microgeometry. Furthermore, effect of different types of mechanical working used before electropolishing on final surface state was evaluated by observation in changes of topography. Research was conducted on electrolytic copper and brass. Analysis of surface geometry and its parameters (Ra, Sa) was used as criterion describing efficiency of chemical electropolishing. Results of the experiment allow for current parameter optimization of electrochemical polishing process for selected non-ferrous alloys with preliminary mechanical preparation of the surface.


2021 ◽  
Vol 21 (6) ◽  
pp. 3513-3523
Author(s):  
Madhu Sudan Guray ◽  
Prasad Minakshi ◽  
Basanti Brar ◽  
Ruma Rani ◽  
Upendra P. Lambe

Bluetongue (BT) disease is a noncontagious disease of domestic and wild ruminants (mainly sheep, cattle, deer) caused by the bluetongue virus (BTV) which is an orbivirus of the Reoviridae family and transmitted by vector Culicoides biting midges. It is a reportable disease of considerable socioeconomic concern and of major importance for the international trade of animals and animal products. Conventional diagnostic methods, such as virus propagation and isolation, immunoassays and also various molecular methods have been developed for the detection of the BTV. Here, we present a novel, rapid and pen-side test for the detection of BTV using multiwalled carbon nanotube (MWCNTs) based immunosensor. Though it is not reported yet. The MWCNTs were prepared, characterized and functionalized with carboxyl group. Viral antibodies were conjugated successfully with functionalized MWCNTs and coated on screen printed carbon electrode (SPCE). These SPCE were evaluated by using electrochemical sensor with an antigen specific to BTV antibodies, resulted in the self-assembled layer of antigen–antibody on the surface of SPCE. The approach described in the present study is a prototype for the development of simple and economic diagnostic tool which will provide the routine screening of BT disease at the door of farmers, thereby increasing the income of farmers by decreasing the cost of diagnosis.


Author(s):  
Shonit Nair Sharma ◽  
Devrina Chidambaram ◽  
Gianna Mizzi ◽  
Daniel Rosen ◽  
Kristin Slaughter ◽  
...  

Abstract As a preemptive response to the widespread need for respiratory medical devices developing in the wake of the COVID-19 pandemic, we propose a low-cost incentive spirometer for respiratory rehabilitation in patients with reduced lung function. An incentive spirometer manufactured entirely out of recyclable material, termed “Paperometer,” aims to address the multifaced problem of medical device inaccessibility: high cost, lack of user- or environmental-friendliness, and unavailability to those who need them the most. Operating in accordance with governing physical formulae including Ohm’s law and the Hagen-Poiseuille equation, Paperometer is intended to improve the user’s lung function through repeated use of the device, which facilitates slow, deep breaths of air. Several prototypes were created based on a list of design criteria established through background research and stakeholder interviews. From four initial prototypes, all created predominantly from simple foldable geometries, one design was selected for further iteration. The most promising functional prototype was crafted from recyclable plastic and paper folded into various shapes including a box, tube, and pinwheel. The Paperometer concept stands as an innovative solution to reduce the cost and environmental burden of meeting the demand for medical devices. Once validated, the device may serve as an important tool in combating the ongoing global pandemic.


1992 ◽  
Vol 22 (7) ◽  
pp. 980-983 ◽  
Author(s):  
Richard G. Oderwald ◽  
Elizabeth Jones

Formulas are derived for determining the total number of sample points and the number of volume points for a point, double sample with a ratio of means estimator to replace a point sample and achieve the same variance. A minimum ratio of the cost of measuring volume to the cost of measuring basal area at a point is determined for which the point, double sample will be less costly, in terms of time required to measure points, than the point sample.


Author(s):  
Chirag Satapathy, Hrishikesh Gokhale, Ali Zoya Syed, Keerti Srivastava and Ruban Nersisson

COVID-19 is a global pandemic infecting human life. There are many patients who have recovered from this deadly virus and need to be monitored constantly even when they are at home. IoT plays a vital role in health systems that help to monitor patient’s health conditions. These healthcare frameworks consist of smart sensors to keep a track of patient’s vitals on a real-time basis. These systems will help bridge gaps between the patients and doctors during the pandemic situation. In order to make our system competitive against the already existing devices, we prepared a comprehensive review where we extensively studied other products and compared them to find what's best for the patients.


Sign in / Sign up

Export Citation Format

Share Document