scholarly journals How does tooth cusp radius of curvature affect brittle food item processing?

2013 ◽  
Vol 10 (84) ◽  
pp. 20130240 ◽  
Author(s):  
Michael A. Berthaume ◽  
Elizabeth R. Dumont ◽  
Laurie R. Godfrey ◽  
Ian R. Grosse

Tooth cusp sharpness, measured by radius of curvature (RoC), has been predicted to play a significant role in brittle/hard food item fracture. Here, we set out to test three existing hypotheses about this relationship: namely, the Blunt and Strong Cusp hypotheses, which predict that dull cusps will be most efficient at brittle food item fracture, and the Pointed Cusp hypothesis, which predicts that sharp cusps will be most efficient at brittle food item fracture using a four cusp bunodont molar. We also put forth and test the newly constructed Complex Cusp hypothesis, which predicts that a mixture of dull and sharp cusps will be most efficient at brittle food item fracture. We tested the four hypotheses using finite-element models of four cusped, bunodont molars. When testing the three existing hypotheses, we assumed all cusps had the same level of sharpness (RoC), and gained partial support for the Blunt Cusp hypotheses. We found no support for the Pointed Cusp or Strong Cusp hypotheses. We used the Taguchi sampling method to test the Complex Cusps hypothesis with a morphospace created by independently varying the radii of curvature of the four cusps in the buccolingual and mesiodistal directions. The optimal occlusal morphology for fracturing brittle food items consists of a combination of sharp and dull cusps, which creates high stress concentrations in the food item while stabilizing the food item and keeping the stress concentrations in the enamel low. This model performed better than the Blunt Cusp hypothesis, suggesting a role for optimality in the evolution of cusp form.

2011 ◽  
Vol 110-116 ◽  
pp. 1519-1524
Author(s):  
Amir Kazemi ◽  
Vahid Khamesi ◽  
Sayad Hajimahamadi

In this study, 3D finite element models were developed to evaluate the effect of canal diameter on the stress distributions of post and dentin in post-core restored endodontically treated maxillary incisor under various static loads. The results show that the posts with large diameters support more of the load, but cause high stress concentrations at the apical portion of the root, which is not desirable.


1967 ◽  
Vol 2 (3) ◽  
pp. 239-245 ◽  
Author(s):  
M J Iremonger ◽  
W G Wood

An investigation has been made into the suitability of the finite-element method for studying the stresses in composite materials and the case of a single broken fibre in a matrix has been examined. It has been found that high stress concentrations occur in the region of the fibre break which increase with decreasing end gap and would cause matrix yielding or fracture at comparatively low overall stresses. When the end gap is not void but filled with matrix much lower stress concentrations occur which, below a certain value of end gap, actually decrease as the gap is made smaller.


2003 ◽  
Vol 125 (4) ◽  
pp. 299-303 ◽  
Author(s):  
Eyassu Woldesenbet

Analysis of polymer-matrix composite sucker rod systems using finite element methods is performed. Composite sucker rods used in oil production fail mainly due to fatigue loading. In majority of cases, the failure is in the region of the joint where the composite rod and the steel endfitting meet. 2D and 3D Finite Element Analysis and experimental tests are carried out in order to observe the stress distribution and to find the regions of stress concentrations inside the endfitting. The causes of failure of the composite sucker rods are identified as high transverse compressive stress caused by overloading that results in the crushing of the rod, and high stress concentrations present at the grooves of the endfitting that initiate premature cracks. Based on the result of this study, enhanced design of the composite sucker rod system can be accomplished.


2011 ◽  
Vol 415-417 ◽  
pp. 66-70
Author(s):  
Yong Ma ◽  
Qi Huang ◽  
Tian Ji ◽  
Zhi Feng Lou

An accurate finite element contact analysis of helical gears was done directly under ANSYS, while the integrated elastic deformation of the meshed teeth was extracted directly from the finite element contact analysis results, and considered as the main basis of the amount of tooth profile modification. Linear, conic, cubic, and sine relief curve are compiled and established in MATLAB, on which gear models of two ways of modified gear are built. Under the same modified parameters, contact method is used on the proposed finite element models of gears by software LS-DYNA, and the effect of the two ways of gear relief on contact force on teeth face is analyzed. The results show that the effect of a pair of gears relief is better than one gear relief for linear and conic relief curve, and the effect of one gear relief is better than a pair of gears relief for cubic and sine relief curve. So dynamic simulation on modified involute gears has great significance for reducing contact force of teeth face of gears.


2016 ◽  
Vol 56 (2) ◽  
pp. 132
Author(s):  
Guan Quan ◽  
Shan-Shan Huang ◽  
Ian Burgess

<p>In this study, an analytical model of the combination of beam-web shear buckling and bottom-flange buckling at elevated temperatures has been introduced. This analytical model is able to track the force-deflection path during post-buckling. A range of 3D finite element models has been created using the ABAQUS software. Comparisons have been carried out between the proposed analytical model, finite element modelling and an existing theoretical model by Dharma (2007). Comparisons indicate that the proposed method is able to provide accurate predictions for Class 1 and Class 2 beams, and performs better than the existing Dharma model, especially for beams with high flange-to-web thickness ratios. A component-based model has been created on the basis of the analytical model, and will in due course be implemented in the software Vulcan for global structural fire analysis.</p>


2000 ◽  
Vol 123 (3) ◽  
pp. 295-301 ◽  
Author(s):  
Yu Gu ◽  
Toshio Nakamura ◽  
William T. Chen ◽  
Brian Cotterell

Using detailed finite element models, a fracture analysis of solder bumps and under bump metallurgy (UBM) in flip-chip packages is carried out. Our objective is to identify likely fracture modes and potential delamination sites at or near these microstructural components. In order to study flip-chips, whose dimension spans from sub-micron thickness UBM layers to several millimeters wide package, we have applied a multi-scale finite element analysis (MS-FEA) procedure. In this procedure, initially, deformation of whole thermally loaded package is analyzed. Then, the results are prescribed as the boundary conditions in a very detailed cell model, containing a single solder bump, to investigate micro-deformation surrounding UBM. Using the models with two different scales, accurate stress fields as well as fracture parameters of various interface cracks can be determined. The MS-FEA is ideally suited for the flip-chip packages since they contain many identical solder bumps. A cell model can be repeatedly used to probe stress and fracture behaviors at different locations. The computed results show high stress concentrations near the corners of solder bumps and UBM layers. Based on the energy release rate calculations, solder bumps located near the edge of chip are more likely to fail. However, our results also suggest possible delamination growth at solder bumps near the center of chip. In addition, we have observed increasing energy release rates for longer cracks, which implies a possibility of unstable crack growth.


Author(s):  
Md Abu Hasan

This study compares the effects of lingualized and linear occlusion schemes on the stress distribution of an implant retained mandibular overdenture (IRO) using finite element analysis (FEA). A high fidelity solid model of mandibular overdenture incorporating cusps and fossae of occlusal surface with two anterior implants in the canine regions and residual ridge support in the posterior region of the alveolar bone was modeled in SolidWorks and imported to ANSYS for stress analysis. The load was applied vertically to the central grooves and buccal cusp tips of the premolars and molar teeth for the lingualized and linear occlusion respectively. The loading magnitudes were 200 N on the premolars and 200 N on the molar teeth with multiple contact locations. The results show that the linear occlusion scheme generated higher stress in the implants and the prosthetic bar than the lingualized occlusion. The locations of high stress concentrations were the neck of the implants and the implant-prosthetic bar intersection for both the occlusion schemes. However, in the cortical bone lingualized occlusion loading scheme generated higher stress (max principal stress) than the linear one suggesting possibility of greater bone loss. The results of this study could be used to comprehend the stress distribution in the denture teeth, base, bone-implant interface and surrounding bone for the two occlusion concepts and may be of help to the clinicians in choosing the right scheme for the edentulous patients.


2012 ◽  
Vol 630 ◽  
pp. 121-126
Author(s):  
Gong Wu Huang ◽  
Ai Jun Chen ◽  
Shao Min Luo ◽  
Cheng Xu

Finite element models of bullet penetrating UHMWPE fiber layers are established to study the relationship between parameters of projectile and penetration ability using LS-DYNA software. The numerical simulation results of penetration calculated in Lagrange algorithm are in good agreement with the real experimental results, which verify the validity of the finite element models and algorithm. The numerical results show that high speed and small angle of attack can improve the penetration ability, the penetration ability of oval projectile is better than flat head projectile. A valid and reliable research approach for evaluating the design of protective equipment and efficiency of projectiles are proposed.


Sign in / Sign up

Export Citation Format

Share Document