scholarly journals Genomic instability and cancer: lessons from Drosophila

Open Biology ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 200060
Author(s):  
Stephan U. Gerlach ◽  
Héctor Herranz

Cancer is a genetic disease that involves the gradual accumulation of mutations. Human tumours are genetically unstable. However, the current knowledge about the origins and implications of genomic instability in this disease is limited. Understanding the biology of cancer requires the use of animal models. Here, we review relevant studies addressing the implications of genomic instability in cancer by using the fruit fly, Drosophila melanogaster , as a model system. We discuss how this invertebrate has helped us to expand the current knowledge about the mechanisms involved in genomic instability and how this hallmark of cancer influences disease progression.

2019 ◽  
Vol 7 (9) ◽  
pp. 336 ◽  
Author(s):  
Florence Capo ◽  
Alexa Wilson ◽  
Francesca Di Cara

In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.


Cholesterol ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ryusuke Niwa ◽  
Yuko S. Niwa

Cholesterol has long been recognized for its versatile roles in influencing the biophysical properties of cell membranes and for serving as a precursor of steroid hormones. While many aspects of cholesterol biosynthesis are well understood, little is currently known about the molecular mechanisms of cholesterol metabolism and homeostasis. Recently, genetic approaches in the fruit fly, Drosophila melanogaster, have been successfully used for the analysis of molecular mechanisms that regulate cholesterol metabolism and homeostasis. This paper summarizes the recent studies on genes that regulate cholesterol metabolism and homeostasis, including neverland, Niemann Pick type C(NPC) disease genes, and DHR96.


2002 ◽  
Vol 9 (2) ◽  
pp. 59-69 ◽  
Author(s):  
S. Gorski ◽  
M. Marra

Programmed cell death (PCD) is an essential and wide-spread physiological process that results in the elimination of cells. Genes required to carry out this process have been identified, and many of these remain the subjects of intense investigation. Here, we describe PCD, its functions, and some of the consequences when it goes awry. We review PCD in the model system, the fruit fly, Drosophila melanogaster, with a particular emphasis on cell death gene discovery resulting from both genetics and genomics-based approaches.


Open Biology ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 180259 ◽  
Author(s):  
Suewei Lin ◽  
Bhagyashree Senapati ◽  
Chang-Hui Tsao

Hunger is a motivational state that drives eating and food-seeking behaviour. In a psychological sense, hunger sets the goal that guides an animal in the pursuit of food. The biological basis underlying this purposive, goal-directed nature of hunger has been under intense investigation. With its rich behavioural repertoire and genetically tractable nervous system, the fruit fly Drosophila melanogaster has emerged as an excellent model system for studying the neural basis of hunger and hunger-driven behaviour. Here, we review our current understanding of how hunger is sensed, encoded and translated into foraging and feeding behaviours in the fruit fly.


Author(s):  
Mandar S. Paingankar ◽  
Mangesh D. Gokhale ◽  
Deepti D. Deobagkar ◽  
Dileep N. Deobagkar

ABSTRACTArboviruses cause the most devastating diseases in humans and animals worldwide. Several hundred arbovirus are transmitted by mosquitoes, sand flies or ticks and are responsible for more than million deaths annually. Development of a model system is essential to extrapolate the molecular events occurring during infection in the human and mosquito host. Virus overlay protein binding assay (VOPBA) combined with MALDI TOF/TOF MS revealed that Dengue-2 virus (DENV-2) exploits similar protein molecules in Drosophila melanogaster and Aedes aegypti for its infection. Furthermore, the virus susceptibility studies revealed that DENV-2 could propagate in D. melanogaster, and DENV-2 produced in fruit fly is equally infectious to D. melanogaster and Ae. aegypti. Additionally, real time PCR analysis revealed that RNAi coupled with JAK-STAT and Toll pathway constitutes an effector mechanism to control the DENV-2 infection in flies. These observations point out that D. melanogaster harbors all necessary machineries to support the growth of arboviruses. With the availability of well-established techniques for genetic and developmental manipulations, D. melanogaster, offers itself as the potential model system for the study of arbovirus-vector interactions.


2021 ◽  
Vol 3 (1) ◽  
pp. 127-136
Author(s):  
Adam Bradlaugh ◽  
Anna L. Munro ◽  
Alex R. Jones ◽  
Richard A. Baines

The flavoprotein CRYPTOCHROME (CRY) is now generally believed to be a magnetosensor, providing geomagnetic information via a quantum effect on a light-initiated radical pair reaction. Whilst there is considerable physical and behavioural data to support this view, the precise molecular basis of animal magnetosensitivity remains frustratingly unknown. A key reason for this is the difficulty in combining molecular and behavioural biological experiments with the sciences of magnetics and spin chemistry. In this review, we highlight work that has utilised the fruit fly, Drosophila melanogaster, which provides a highly tractable genetic model system that offers many advantages for the study of magnetosensitivity. Using this “living test-tube”, significant progress has been made in elucidating the molecular basis of CRY-dependent magnetosensitivity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Vol 22 (8) ◽  
pp. 3860
Author(s):  
Elisa Ren ◽  
Giulia Curia

Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1149
Author(s):  
Glenda M. Beaman ◽  
Raimondo M. Cervellione ◽  
David Keene ◽  
Heiko Reutter ◽  
William G. Newman

The bladder exstrophy–epispadias complex (BEEC) is an abdominal midline malformation comprising a spectrum of congenital genitourinary abnormalities of the abdominal wall, pelvis, urinary tract, genitalia, anus, and spine. The vast majority of BEEC cases are classified as non-syndromic and the etiology of this malformation is still unknown. This review presents the current knowledge on this multifactorial disorder, including phenotypic and anatomical characterization, epidemiology, proposed developmental mechanisms, existing animal models, and implicated genetic and environmental components.


Sign in / Sign up

Export Citation Format

Share Document