scholarly journals Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential

Open Biology ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 200237 ◽  
Author(s):  
Johannes Gregor Matthias Rack ◽  
Valentina Zorzini ◽  
Zihan Zhu ◽  
Marion Schuller ◽  
Dragana Ahel ◽  
...  

Viral macrodomains possess the ability to counteract host ADP-ribosylation, a post-translational modification implicated in the creation of an antiviral environment via immune response regulation. This brought them into focus as promising therapeutic targets, albeit the close homology to some of the human macrodomains raised concerns regarding potential cross-reactivity and adverse effects for the host. Here, we evaluate the structure and function of the macrodomain of SARS-CoV-2, the causative agent of COVID-19. We show that it can antagonize ADP-ribosylation by PARP14, a cellular (ADP-ribosyl)transferase necessary for the restriction of coronaviral infections. Furthermore, our structural studies together with ligand modelling revealed the structural basis for poly(ADP-ribose) binding and hydrolysis, an emerging new aspect of viral macrodomain biology. These new insights were used in an extensive evolutionary analysis aimed at evaluating the druggability of viral macrodomains not only from the Coronaviridae but also Togaviridae and Iridoviridae genera (causing diseases such as Chikungunya and infectious spleen and kidney necrosis virus disease, respectively). We found that they contain conserved features, distinct from their human counterparts, which may be exploited during drug design.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chun-Song Yang ◽  
Kasey Jividen ◽  
Teddy Kamata ◽  
Natalia Dworak ◽  
Luke Oostdyk ◽  
...  

AbstractAndrogen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Marcin Śmiałek ◽  
Michał Gesek ◽  
Daria Dziewulska ◽  
Jowita Samanta Niczyporuk ◽  
Andrzej Koncicki

Transmissible viral proventriculitis (TVP) of chickens is manifested in decreased body weight gains, poor feed conversion and weight diversity. Although TVP etiology has not been defined, a Birnaviridae family member, named chicken proventricular necrosis virus (CPNV) is considered as a potential factor of a disease. This study was undertaken in order to reproduce TVP and to evaluate its etiology. Broiler chickens of the TVP-infected group were inoculated with TVP positive proventriculi homogenate on the 24th day of life. Samples were collected, on infection day and 14 days post-infection (dpi). The 14 dpi anatomo- and histopathological evaluation, revealed that we have succeeded to reproduce TVP. TVP-infected birds gained 30.38% less body weight. In the TVP-infected group a seroconversion against picornaviruses, fowl adenoviruses (FAdV) and infectious bursal disease viruses (IBDV) was recorded with an ELISA test. Using RT-PCR and PCR, CPNV was detected in proventriculi and FAdV in spleens and livers of infected birds, 14 dpi. Our study supports that CPNV is involved in the development of TVP. We did not record the presence of IBDV in TVP or control birds, despite our recording of a seroconversion against IBDV in TVP infected birds. CPNV and IBDV belong to the same family, which allows us to assume serological cross-reactivity between them. The role of FAdV needs further evaluation.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Isabel J. Skypala ◽  
Ricardo Asero ◽  
Domingo Barber ◽  
Lorenzo Cecchi ◽  
Arazeli Diaz Perales ◽  
...  

2004 ◽  
Vol 385 (1) ◽  
pp. 309-317 ◽  
Author(s):  
Zhefeng ZHAO ◽  
Joanna GRUSZCZYNSKA-BIEGALA ◽  
Anna ZOLKIEWSKA

The extracellular domain of integrin α7 is ADP-ribosylated by an arginine-specific ecto-ADP-ribosyltransferase after adding exogenous NAD+ to intact C2C12 skeletal muscle cells. The effect of ADP-ribosylation on the structure or function of integrin α7β1 has not been explored. In the present study, we show that ADP-ribosylation of integrin α7 takes place exclusively in differentiated myotubes and that this post-translational modification modulates the affinity of α7β1 dimer for its ligand, laminin. ADP-ribosylation in the 37-kDa ‘stalk’ region of α7 that takes place at micromolar NAD+ concentrations increases the binding of the α7β1 dimer to laminin. Increased in vitro binding of integrin α7β1 to laminin after ADP-ribosylation of the 37-kDa fragment of α7 requires the presence of Mn2+ and it is not observed in the presence of Mg2+. In contrast, ADP-ribosylation of the 63-kDa N-terminal region comprising the ligand-binding site of α7 that occurs at approx. 100 μM NAD+ inhibits the binding of integrin α7β1 to laminin. Furthermore, incubation of C2C12 myotubes with NAD+ increases the expression of an epitope on integrin β1 subunit recognized by monoclonal antibody 9EG7. We discuss our results based on the current models of integrin activation. We also hypothesize that ADP-ribosylation may represent a mechanism of regulation of integrin α7β1 function in myofibres in vivo when the continuity of the membrane is compromised and NAD+ is available as a substrate for ecto-ADP-ribosylation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giulietta M. Riboldi ◽  
Irene Faravelli ◽  
Takaaki Kuwajima ◽  
Nicolas Delestrée ◽  
Georgia Dermentzaki ◽  
...  

AbstractSMN is a ubiquitously expressed protein and is essential for life. SMN deficiency causes the neurodegenerative disease spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. SMN interacts with itself and other proteins to form a complex that functions in the assembly of ribonucleoproteins. SMN is modified by SUMO (Small Ubiquitin-like Modifier), but whether sumoylation is required for the functions of SMN that are relevant to SMA pathogenesis is not known. Here, we show that inactivation of a SUMO-interacting motif (SIM) alters SMN sub-cellular distribution, the integrity of its complex, and its function in small nuclear ribonucleoproteins biogenesis. Expression of a SIM-inactivated mutant of SMN in a mouse model of SMA slightly extends survival rate with limited and transient correction of motor deficits. Remarkably, although SIM-inactivated SMN attenuates motor neuron loss and improves neuromuscular junction synapses, it fails to prevent the loss of sensory-motor synapses. These findings suggest that sumoylation is important for proper assembly and function of the SMN complex and that loss of this post-translational modification impairs the ability of SMN to correct selective deficits in the sensory-motor circuit of SMA mice.


1990 ◽  
Vol 258 (6) ◽  
pp. F1640-F1649
Author(s):  
E. Bellorin-Font ◽  
R. Starosta ◽  
C. L. Milanes ◽  
C. Lopez ◽  
N. Pernalete ◽  
...  

These studies examine the regulation of adenylate cyclase in renal cortical membranes from phosphate-deprived and phosphate-deprived acidotic dogs. Enzyme stimulation by parathyroid hormone (PTH) was decreased in phosphate deprivation [Vmax 1,578 +/- 169 vs. 2,581 +/- 219 pmol adenosine 3',5'-cyclic monophosphate (cAMP).mg protein-1 x 30 min-1 in controls, P less than 0.01]. Metabolic acidosis further decreased PTH-stimulated activity. Membranes from phosphate-deprived dogs showed a decrease in Gs alpha-content by cholera toxin-dependent ADP-ribosylation (174 +/- 18 arbitrary units vs. 266.4 +/- 13.6 in controls, P less than 0.01). Metabolic acidosis further decreased Gs alpha-content, P less than 0.01. Gi content by pertussis-dependent ADP-ribosylation was also lower in phosphate-deprived and phosphate-deprived acidotic animals. Gs function was examined by its property to protect the catalytic unit from inactivation by N-ethylmaleimide when preincubated with GTP gamma S. In controls, protection of inactivation was 80% of the maximal activity, whereas in phosphate deprivation protection was less than 50%. In conclusion, metabolic acidosis enhances adenylate cyclase resistance to PTH in phosphate deprivation. These alterations are associated with a decrease in the content and function of Gs alpha, suggesting a role of Gs in the renal adaptation to phosphate depletion and acidosis.


2002 ◽  
Vol 13 (9) ◽  
pp. 3078-3095 ◽  
Author(s):  
Annette L. Boman ◽  
Paul D. Salo ◽  
Melissa J. Hauglund ◽  
Nicole L. Strand ◽  
Shelly J. Rensink ◽  
...  

Golgi-localized γ-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ∼25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs andVPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Gao ◽  
Chong Ma ◽  
Huqiang Wang ◽  
Haolin Zhong ◽  
Jiayin Zang ◽  
...  

AbstractInterestingly, some protein domains are intrinsically disordered (abbreviated as IDD), and the disorder degree of same domains may differ in different contexts. However, the evolutionary causes and biological significance of these phenomena are unclear. Here, we address these issues by genome-wide analyses of the evolutionary and functional features of IDDs in 1,870 species across the three superkingdoms. As the result, there is a significant positive correlation between the proportion of IDDs and organism complexity with some interesting exceptions. These phenomena may be due to the high disorder of clade-specific domains and the different disorder degrees of the domains shared in different clades. The functions of IDDs are clade-specific and the higher proportion of post-translational modification sites may contribute to their complex functions. Compared with metazoans, fungi have more IDDs with a consecutive disorder region but a low disorder ratio, which reflects their different functional requirements. As for disorder variation, it’s greater for domains among different proteins than those within the same proteins. Some clade-specific ‘no-variation’ or ‘high-variation’ domains are involved in clade-specific functions. In sum, intrinsic domain disorder is related to both the organism complexity and clade-specific functions. These results deepen the understanding of the evolution and function of IDDs.


Sign in / Sign up

Export Citation Format

Share Document