scholarly journals Understanding and exploiting interactions between cellular proteostasis pathways and infectious prion proteins for therapeutic benefit

Open Biology ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 200282
Author(s):  
Unekwu M. Yakubu ◽  
Celso S. G. Catumbela ◽  
Rodrigo Morales ◽  
Kevin A. Morano

Several neurodegenerative diseases of humans and animals are caused by the misfolded prion protein (PrP Sc ), a self-propagating protein infectious agent that aggregates into oligomeric, fibrillar structures and leads to cell death by incompletely understood mechanisms. Work in multiple biological model systems, from simple baker's yeast to transgenic mouse lines, as well as in vitro studies, has illuminated molecular and cellular modifiers of prion disease. In this review, we focus on intersections between PrP and the proteostasis network, including unfolded protein stress response pathways and roles played by the powerful regulators of protein folding known as protein chaperones. We close with analysis of promising therapeutic avenues for treatment enabled by these studies.

2011 ◽  
Vol 286 (22) ◽  
pp. 20020-20030 ◽  
Author(s):  
Murilo S. Alves ◽  
Pedro A. B. Reis ◽  
Silvana P. Dadalto ◽  
Jerusa A. Q. A. Faria ◽  
Elizabeth P. B. Fontes ◽  
...  

As in all other eukaryotic organisms, endoplasmic reticulum (ER) stress triggers the evolutionarily conserved unfolded protein response in soybean, but it also communicates with other adaptive signaling responses, such as osmotic stress-induced and ER stress-induced programmed cell death. These two signaling pathways converge at the level of gene transcription to activate an integrated cascade that is mediated by N-rich proteins (NRPs). Here, we describe a novel transcription factor, GmERD15 (Glycine max Early Responsive to Dehydration 15), which is induced by ER stress and osmotic stress to activate the expression of NRP genes. GmERD15 was isolated because of its capacity to stably associate with the NRP-B promoter in yeast. It specifically binds to a 187-bp fragment of the NRP-B promoter in vitro and activates the transcription of a reporter gene in yeast. Furthermore, GmERD15 was found in both the cytoplasm and the nucleus, and a ChIP assay revealed that it binds to the NRP-B promoter in vivo. Expression of GmERD15 in soybean protoplasts activated the NRP-B promoter and induced expression of the NRP-B gene. Collectively, these results support the interpretation that GmERD15 functions as an upstream component of stress-induced NRP-B-mediated signaling to connect stress in the ER to an osmotic stress-induced cell death signal.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1835
Author(s):  
Lisa Kraft ◽  
Martina Sauter ◽  
Guiscard Seebohm ◽  
Karin Klingel

Coxsackievirus B3 (CVB3) belongs to the enteroviruses, which are a well-known cause of acute and chronic myocarditis, primarily infecting cardiac myocytes. As primary human cardiomyocytes are difficult to obtain, viral myocarditis is quite frequently studied in vitro in different non-cardiac and cardiac-like cell lines. Recently, cardiomyocytes that have been differentiated from human-induced pluripotent stem cells have been described as a new model system to study CVB3 infection. Here, we compared iCell® Cardiomyocytes with other cell lines that are commonly used to study CVB3 infection regarding their susceptibility and patterns of infection and the mode of cell death. iCell® Cardiomyocytes, HeLa cells, HL-1 cells and H9c2 cells were infected with CVB3 (Nancy strain). The viral load, CVB3 RNA genome localization, VP1 expression (including the intracellular localization), cellular morphology and the expression of cell death markers were compared. The various cell lines clearly differed in their permissiveness to CVB3 infection, patterns of infection, viral load, and mode of cell death. When studying the mode of cell death of CVB3-infected iCell® Cardiomyocytes in more detail, especially regarding the necroptosis key players RIPK1 and RIPK3, we found that RIPK1 is cleaved during CVB3 infection. iCell® Cardiomyocytes represent well the natural host of CVB3 in the heart and are thus the most appropriate model system to study molecular mechanisms of CVB3-induced myocarditis in vitro. Doubts are raised about the suitability of commonly used cell lines such as HeLa cells, HL-1 cells and H9c2 cells to evaluate molecular pathways and processes occurring in vivo in enteroviral myocarditis.


2019 ◽  
Author(s):  
Francisco José Sala de Oyanguren ◽  
Nathan E. Rainey ◽  
Aoula Moustapha ◽  
Ana Saric ◽  
Franck Sureau ◽  
...  

Curcumin, a major active component of turmeric (Curcuma longa, L.), is known to have various effects on both healthy and cancerous tissues. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effects of curcumin is still unclear. Since there is a consensus about endoplasmic reticulum (ER) stress being involved in the cytotoxicity of many natural compounds, we investigated by Amnis®Imaging flow cytometry the mechanistic aspects of curcumin’s destabilization of the ER, but also the status of the lysosomal compartment involved in curcumin-associated apoptosis. Curcumin induces ER stress thereby causing an unfolded protein response (UPR) and calcium release which destabilize the mitochondrial compartment and induce apoptosis. These events are also associated with secondary lysosomal membrane permeabilization and activation of caspase-8, mediated by activation of cathepsins and calpains. We previously showed that sequence lead to the generation of truncated tBid and disruption of mitochondrial homeostasis. These two pathways of different intensities and momentum converge towards an amplification of cell death that still needs to be studied in more detail. It has been suggested that it may be possible to exploit autophagy for cancer therapy. There is a complex interplay involving early autophagy as soon as mitochondria produce superoxide anions and hydrogen peroxide. Treatments with 10 µM to 20 µM curcumin induce autophagosome formation, while only early events of cell death are detectable.In the present study, curcumin-induced autophagy failed to rescue all cells since most cells underwent type II cell death following initial autophagic processes. However, a small number of cells blocked in the cell cycle escaped and were rescued to give rise to a novel proliferation phase.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 361 ◽  
Author(s):  
Francisco J. Sala de Oyanguren ◽  
Nathan E. Rainey ◽  
Aoula Moustapha ◽  
Ana Saric ◽  
Franck Sureau ◽  
...  

Curcumin, a major active component of turmeric (Curcuma longa, L.), is known to have various effects on both healthy and cancerous tissues. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effect of curcumin is still unclear. Since there is a recent consensus about endoplasmic reticulum (ER) stress being involved in the cytotoxicity of natural compounds, we have investigated using Image flow cytometry the mechanistic aspects of curcumin’s destabilization of the ER, but also the status of the lysosomal compartment. Curcumin induces ER stress, thereby causing an unfolded protein response and calcium release, which destabilizes the mitochondrial compartment and induce apoptosis. These events are also associated with secondary lysosomal membrane permeabilization that occurs later together with an activation of caspase-8, mediated by cathepsins and calpains that ended in the disruption of mitochondrial homeostasis. These two pathways of different intensities and momentum converge towards an amplification of cell death. In the present study, curcumin-induced autophagy failed to rescue all cells that underwent type II cell death following initial autophagic processes. However, a small number of cells were rescued (successful autophagy) to give rise to a novel proliferation phase.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A59.1-A59
Author(s):  
F Gsottberger ◽  
C Meier ◽  
S Petkovic ◽  
L Mellenthin ◽  
M Krumbholz ◽  
...  

BackgroundBecause tumor cells have high proliferation rates the demand for energy on the one hand and proteins on the other hand is high. In line, protein folding machinery of the ER is heavily used. 2-Deoxyglucose (2-DG) not only blocks energy synthesis by inhibiting glycolysis but also blocks synthesis of mannosyl leading to impaired N-linked glycosylation, accumulation of misfolded proteins, and increased unfolded protein response (UPR). However, due to compensatory events, UPR-induced apoptosis is hampered. Therefore, we combined 2-DG with targeted protein synthesis inhibition by immunotoxins, consisting of an antibody and pseudomonas exotoxin, to enhance UPR mediated cell death.Materials and MethodsEstablished cell lines and patient-derived B-ALL samples were treated in vitro with various protein synthesis inhibitors and UPR-inducers. Drug synergy was determined mathematically as fold-increase over additivity. Biochemical studies were performed using western blots. In vivo enhancement was tested using systemic xenograft models.ResultsThe combination of Moxetumomab and 2-DG achieved a two to nine-fold synergy in vitro. Synergy was abrogated by the addition of Mannose suggesting UPR as cause of synergistic cell death. Similarly, Moxetumomab enhanced UPR-inducers Bortezomib and tunicamycin and protein synthesis inhibition by cycloheximide and puromycin enhanced 2-DG suggesting a conserved mechanism. Using HB21, an immunotoxin targeting human transferrin-receptor, breast cancer, hepatocellular carcinoma, and glioblastoma were sensitized to 2-DG induced cell death. Biochemically, 2-DG increased XBP-1-cleavage, expression of pro-apoptotic CHOP and of anti-apoptotic BIP. Moxetumomab, however, blocked the upregulation of BIP while maintaining CHOP correlating with synergistic increase in PARP-cleavage and apoptosis. In two systemic mouse models, bone marrow (BM) lymphoma infiltration was not reduced by 2-DG or tunicamycin alone but was reduced after treatment with Moxetumomab alone by 5-fold in the JeKo-1 and by 16-fold in the Ramos model, respectively. The combination of Moxetumomab and 2-DG achieved a three-fold synergy in the JeKo-1 model and achieved MRD-negative BM status in the Ramos model. Against patient-derived B-ALL of the Burkitt’s type, 2-DG and Moxetumomab were up to 5-fold more active in vitro and up to 7-fold more active in mouse xenografts in vivo.ConclusionsCell death after persisting unfolded protein response is synergistically enhanced by tumor-cell specific inhibition of protein synthesis against four distinct tumor entities at physiologically achievable concentrations. Our approach of immunotoxin-induced targeted protein synthesis inhibition opens a novel, so far undescribed therapeutic window which may warrant clinical evaluation.Disclosure InformationF. Gsottberger: None. C. Meier: None. S. Petkovic: None. L. Mellenthin: None. M. Krumbholz: None. M. Metzler: None. A. Mackensen: None. F. Müller: None.


2005 ◽  
Vol 16 (1) ◽  
pp. 40-50 ◽  
Author(s):  
Ying Shen ◽  
Linda M. Hendershot

We recently identified ERdj3 as a component of unassembled immunoglobulin (Ig) heavy chain:BiP complexes. ERdj3 also associates with a number of other protein substrates, including unfolded light chains, a nonsecreted Ig light chain mutant, and the VSV-G ts045 mutant at the nonpermissive temperature. We produced an ERdj3 mutant that was unable to stimulate BiP's ATPase activity in vitro or to bind BiP in vivo. This mutant retained the ability to interact with unfolded protein substrates, suggesting that ERdj3 binds directly to proteins instead of via interactions with BiP. BiP remained bound to unfolded light chains longer than ERdj3, which interacted with unfolded light chains initially, but quickly disassociated before protein folding was completed. This suggests that ERdj3 may bind first to substrates and serve to inhibit protein aggregation until BiP joins the complex, whereas BiP remains bound until folding is complete. Moreover, our findings support a model where interactions with BiP help trigger the release of ERdj3 from the substrate:BiP complex.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cansu Tekin ◽  
Hella L. Aberson ◽  
Maarten F. Bijlsma ◽  
C. Arnold Spek

Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is a grim disease with high mortality rates. Increased macrophage influx in PDAC is a common hallmark and associated with poor prognosis. Macrophages have high cellular plasticity, which can differentiate into both anti- and pro-tumorigenic properties. Here, we investigated how naïve (M0) macrophages differ from other macrophages in their anti-tumorigenic activities. Methods In vitro BrdU proliferation and Annexin V cell death analyses were performed on PANC-1 and MIA PaCa-2 PDAC cell lines exposed to conditioned medium of different macrophage subsets. Macrophage secreted factors were measured by transcript analysis and ELISA. Therapeutic antibodies were used to functionally establish the impact of the identified cytokine on PDAC proliferation. Results Proliferation and cell death assays revealed that only M0 macrophages harbor anti-tumorigenic activities and that M1, M2, and TAMs do not. mRNA analysis and ELISA results suggested TNF-α as a potential candidate to mediate M0 macrophage induced cell death. To demonstrate the importance of TNF-α in M0 macrophage-induced cell death, PANC-1 and MIA PaCa-2 cell-lines were exposed to M0 macrophage conditioned medium in the presence of the TNF-α inhibitor Infliximab, which effectively diminished the anti-tumor activities of M0 macrophages. Conclusion Newly tumor-infiltrated naive M0 macrophages exert anti-tumorigenic activities via TNF-α secretion. Their subsequent differentiation into either M1, M2, or TAM subsets reduces TNF-α levels, thereby abolishing their cytotoxic activity on PDAC cells. These data suggest that reestablishing TNF-α secretion in differentiated macrophages might yield a therapeutic benefit.


2020 ◽  
Author(s):  
Cansu Tekin ◽  
Hella L Aberson ◽  
Maarten F Bijlsma ◽  
C. Arnold Spek

Abstract Background: Pancreatic ductal adenocarcinoma (PDAC) is a grim disease with high mortality rates. Increased macrophage influx in PDAC is a common hallmark and associated with poor prognosis. Macrophages have high cellular plasticity, which can differentiate into both anti- and pro-tumorigenic properties. Here, we investigated how naïve (M0) macrophages differ from other macrophages in their anti-tumorigenic activities.Methods: In vitro BrdU proliferation and Annexin V cell death analyses were performed on PANC-1 and MIA PaCa-2 PDAC cell lines exposed to conditioned medium of different macrophage subsets. Macrophage secreted factors were measured by transcript analysis and ELISA. Therapeutic antibodies were used to functionally establish the impact of the identified cytokine on PDAC proliferation.Results: Proliferation and cell death assays revealed that only M0 macrophages harbor anti-tumorigenic activities and that M1, M2, and TAMs do not. mRNA analysis and ELISA results suggested TNF-α as a potential candidate to mediate M macrophage induced cell death. To demonstrate the importance of TNF-α in M macrophage-induced cell death, PANC-1 and MIA PaCa-2 cell-lines were exposed to M macrophage conditioned medium in the presence of the TNF-α inhibitor Infliximab, which effectively diminished the anti-tumor activities of M0 macrophages.Conclusion: Newly tumor-infiltrated naive M0 macrophages exert anti-tumorigenic activities via TNF-α secretion. Their subsequent differentiation into either M1, M2, or TAM subsets reduces TNF-α levels, thereby abolishing their cytotoxic activity on PDAC cells. These data suggest that reestablishing TNF-α secretion in differentiated macrophages might yield a therapeutic benefit.


Hemato ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 607-627
Author(s):  
Elise Aasebø ◽  
Annette K. Brenner ◽  
Maria Hernandez-Valladares ◽  
Even Birkeland ◽  
Håkon Reikvam ◽  
...  

In vitro culture is widely used for characterization of primary human acute myeloid leukemia (AML) cells, but even when using optimized handling and culture conditions the AML cells show spontaneous in vitro apoptosis with a gradual decrease in cell viability during culture. The extent of this stress-induced apoptosis varies between patients, and a high degree of apoptosis is associated with high pre-culture BCL2 levels together with low levels of BAX and Heat Shock Proteins 30 and 90. We compared the global proteomic profiles during ongoing in vitro apoptosis for patients with high and low AML cell viability (i.e., less extensive versus extensive spontaneous apoptosis) after 48 h of culture. We identified 7902 proteins, but only 276 proteins differed significantly between patients with high (i.e., >25% viable cells; 192 upregulated and 84 downregulated peptides) and low viability after in vitro culture. Protein interaction network analysis based on these 276 protein identified three protein networks that included 18 proteins; most of these proteins were localized to the endoplasmic reticulum and several of them are involved in or are altered during the process of endoplasmic reticulum stress/unfolded protein stress response. To conclude, primary AML cells are heterogeneous with regard to degree of apoptosis in response to cellular stress, and this difference in regulation of apoptosis is associated with differences in the induction of and/or response to the unfolded protein stress response.


2008 ◽  
Vol 29 (3) ◽  
pp. 317-333 ◽  
Author(s):  
Donalyn Scheuner ◽  
Randal J. Kaufman

Abstract The endoplasmic reticulum (ER) is the entry site into the secretory pathway for newly synthesized proteins destined for the cell surface or released into the extracellular milieu. The study of protein folding and trafficking within the ER is an extremely active area of research that has provided novel insights into many disease processes. Cells have evolved mechanisms to modulate the capacity and quality of the ER protein-folding machinery to prevent the accumulation of unfolded or misfolded proteins. These signaling pathways are collectively termed the unfolded protein response (UPR). The UPR sensors signal a transcriptional response to expand the ER folding capacity, increase degredation of malfolded proteins, and limit the rate of mRNA translation to reduce the client protein load. Recent genetic and biochemical evidence in both humans and mice supports a requirement for the UPR to preserve ER homeostasis and prevent the β-cell failure that may be fundamental in the etiology of diabetes. Chronic or overwhelming ER stress stimuli associated with metabolic syndrome can disrupt protein folding in the ER, reduce insulin secretion, invoke oxidative stress, and activate cell death pathways. Therapeutic interventions to prevent polypeptide-misfolding, oxidative damage, and/or UPR-induced cell death have the potential to improve β-cell function and/or survival in the treatment of diabetes.


Sign in / Sign up

Export Citation Format

Share Document