scholarly journals The evolutionary origins of the vertebrate olfactory system

Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200330
Author(s):  
Guillaume Poncelet ◽  
Sebastian M. Shimeld

Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.

2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


2021 ◽  
Vol 383 (1) ◽  
pp. 113-123
Author(s):  
Sudeshna Das Chakraborty ◽  
Silke Sachse

AbstractSensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.


2021 ◽  
Vol 22 (11) ◽  
pp. 5793
Author(s):  
Brianna M. Quinville ◽  
Natalie M. Deschenes ◽  
Alex E. Ryckman ◽  
Jagdeep S. Walia

Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.


1992 ◽  
Vol 135 (3) ◽  
pp. 459-468 ◽  
Author(s):  
K. L. Hull ◽  
R. A. Fraser ◽  
S. Harvey

ABSTRACT Although GH has no direct effect on GH release from chicken pituitary glands, GH receptor mRNA similar to that in the rabbit liver was identified by Northern blot analysis in extracts of adult chicken pituitaries. Complementary (c) DNA, reverse transcribed from chicken pituitary RNA, was amplified by the polymerase chain reaction (PCR) in the presence of 3′- and 5′-oligonucleotide primers coding for the extracellular domain of the chicken liver GH receptor and was found to contain an electrophoretically separable fragment of 500 bp, identical in size to that in chicken liver. Digestion of this pituitary cDNA with NcoI produced expected moities of 350 and 150 bp. Amplification of chicken pituitary cDNA in the presence of oligonucleotide primers for the intracellular sequence of the chicken liver GH receptor produced an electrophoretically separable fragment of approximately 800 bp, similar to that in chicken liver. This fragment was cut into expected moieties of 530 and 275 bp after digestion with EcoRI. These PCR fragments were identified in extracts of the pituitary caudal lobe, in which somatotrophs are confined and account for the majority of endocrine cell types, and in the cephalic lobe, in which somatotrophs are lacking. Translation of the GH receptor mRNA in the pituitary gland was indicated by the qualitative demonstration of radio-labelled GH-binding sites in plasma membrane preparations, in pituitary cytosol and in nuclear membranes. These results provide evidence for the expression and translation of the GH receptor gene in pituitary tissue, in which GH receptors appear to be widely distributed within cells and in different cell types. GH may therefore have paracrine, autocrine or intracrine effects on pituitary function. Journal of Endocrinology (1992) 135, 459–468


Endocrinology ◽  
1999 ◽  
Vol 140 (5) ◽  
pp. 2110-2116 ◽  
Author(s):  
Roni Mamluk ◽  
Nitzan Levy ◽  
Bo Rueda ◽  
John S. Davis ◽  
Rina Meidan

Abstract Our previous studies demonstrated that endothelin-1 (ET-1), a 21-amino acid vasoconstrictor peptide, has a paracrine regulatory role in bovine corpus luteum (CL). The peptide is produced within the gland where it inhibits progesterone production by acting via the selective type A endothelin (ETA) receptors. The present study was designed to characterize ETA receptor gene expression in different ovarian cell types and its hormonal regulation. ETA receptor messenger RNA (mRNA) levels were high in follicular cells as well as in CL during luteal regression. At this latter stage, high ETA receptor expression concurred with low prostaglandin F2α receptor mRNA. The ETA receptor gene was expressed by all three major cell populations of the bovine CL; i.e. small and large luteal cells, as well as in luteal endothelial cells. Among these various cell populations, the highest ETA receptor mRNA levels were found in endothelial cells. cAMP elevating agents, forskolin and LH, suppressed ETA receptor mRNA expression in luteinized theca cells (LTC). This inhibition was dose dependent and was evident already after 24 h of incubation. In luteinized granulosa cells (LGC), 10 and 100 ng/ml of insulin-like growth factor I and insulin (only at a concentration of 2000 ng/ml) markedly decreased ETA receptor mRNA levels. In both LGC and LTC there was an inverse relationship between ETA receptor gene expression and progesterone production; insulin (in LGC) and forskolin (in LTC) enhanced progesterone production while inhibiting ETA receptor mRNA levels. Our findings may therefore suggest that, during early stages of luteinization when peak levels of both LH and insulin-like growth factor I exist, the expression of ETA receptors in the gland are suppressed. This study demonstrates physiologically relevant regulatory mechanisms controlling ETA receptor gene expression and further supports the inhibitory role of ET-1 in CL function.


2009 ◽  
Vol 1 (6) ◽  
pp. 497-504 ◽  
Author(s):  
Claire Dalmay ◽  
Arnaud Pothier ◽  
Mathilde Cheray ◽  
Fabrice Lalloue ◽  
Marie-Odile Jauberteau ◽  
...  

This paper presents an original biosensor chip allowing determination of intrinsic relative permittivity of biological cells at microwave frequencies. This sensor permits non-invasive cell identification and discrimination using an RF signal to probe intracellular medium of biological samples. Indeed, these sensors use an RF planar resonator that allows detection capabilities on less than 10 cells, thanks to the microscopic size of its sensitive area. Especially, measurements between 15 and 35 GHz show the ability label-free biosensors to differentiate two human cell types using their own electromagnetic characteristics. The real part of permittivity of cells changes from 20 to 48 for the nervous system cell types studied. The proposed biodetection method is detailed and we show how the accuracy and the repeatability of measurements have been improved to reach reproducible measurements.


2017 ◽  
Vol 90 (3) ◽  
pp. 224-231 ◽  
Author(s):  
Daisuke Kondoh ◽  
Kenichi Watanabe ◽  
Kaori Nishihara ◽  
Yurie S. Ono ◽  
Kentaro G. Nakamura ◽  
...  

The olfactory system of mammals comprises a main olfactory system that detects hundreds of odorants and a vomeronasal system that detects specific chemicals such as pheromones. The main (MOB) and accessory (AOB) olfactory bulbs are the respective primary centers of the main olfactory and vomeronasal systems. Most mammals including artiodactyls possess a large MOB and a comparatively small AOB, whereas most cetaceans lack olfactory bulbs. The common hippopotamus (Hippopotamus amphibius) is semiaquatic and belongs to the order Cetartiodactyla, family Hippopotamidae, which seems to be the closest extant family to cetaceans. The present study evaluates the significance of the olfactory system in the hippopotamus by histologically analyzing the MOB and AOB of a male common hippopotamus. The MOB comprised six layers (olfactory nerve, glomerular, external plexiform, mitral cell, internal plexiform, and granule cell), and the AOB comprised vomeronasal nerve, glomerular, plexiform, and granule cell layers. The MOB contained mitral cells and tufted cells, and the AOB possessed mitral/tufted cells. These histological features of the MOB and the AOB were similar to those in most artiodactyls. All glomeruli in the AOB were positive for anti-Gαi2, but weakly positive for anti-Gαo, suggesting that the hippopotamus vomeronasal system expresses vomeronasal type 1 receptors with a high affinity for volatile compounds. These findings suggest that the olfactory system of the hippopotamus is as well developed as that of other artiodactyl species and that the hippopotamus might depend on its olfactory system for terrestrial social communication.


2021 ◽  
Author(s):  
Yanxiang Deng ◽  
Marek Bartosovic ◽  
Sai Ma ◽  
Di Zhang ◽  
Yang Liu ◽  
...  

Cellular function in tissue is dependent upon the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping, but it remains elusive to capture spatial epigenetic information of tissue at cellular level and genome scale. Here we report on spatial-ATAC-seq: spatially resolved chromatin accessibility profiling of tissue section via next-generation sequencing by combining in situ Tn5 transposition chemistry and microfluidic deterministic barcoding. Spatial chromatin accessibility profiling of mouse embryos delineated tissue region-specific epigenetic landscapes and identified gene regulators implicated in the central nerve system development. Mapping the accessible genome in human tonsil tissue with 20μm pixel size revealed spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology takes spatial biology to a new realm by enabling spatially resolved epigenomics to improve our understanding of cell identity, state, and fate decision in relation to epigenetic underpinnings in development and disease.


Development ◽  
2021 ◽  
Vol 148 (4) ◽  
pp. dev180612
Author(s):  
Filip J. Wymeersch ◽  
Valerie Wilson ◽  
Anestis Tsakiridis

ABSTRACTThe generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document