scholarly journals Production of bioadsorbent from phosphoric acid pretreated palm kernel shell and coconut shell by two-stage continuous physical activation via N 2 and air

2018 ◽  
Vol 5 (12) ◽  
pp. 180775 ◽  
Author(s):  
Chuan Li Lee ◽  
Paik San H'ng ◽  
Md Tahir Paridah ◽  
Kit Ling Chin ◽  
Umer Rashid ◽  
...  

In the present study, agricultural biomass—palm kernel shell (PKS) and coconut shell (CS)—was used to produce high porosity bioadsorbent using two-stage continuous physical activation method with different gas carrier (air and N 2 ) in each stage. The activation temperature was set constant at 600, 700, 800 or 900°C for both activation stages with the heating rate of 3°C min −1 . Two parameters, the gas carrier and activation temperature, were determined as the significant factors on the adsorption properties of bioadsorbent. BET, SEM, FTIR, TGA, CHNS/O and ash content were used to elucidate the developed bioadsorbent prepared from PKS and CS and its capacity towards the adsorption of methylene blue and iodine. The novel process of two-stage continuous physical activation method was able to expose mesopores and micropores that were previously covered/clogged in nature, and simultaneously create new pores. The synthesized bioadsorbents showed that the surface area (PKS: 456.47 m 2 g −1 , CS: 479.17 m 2 g −1 ), pore size (PKS: 0.63 nm, CS: 0.62 nm) and pore volume (PKS: 0.13 cm 3 g −1 , CS: 0.15 cm 3 g −1 ) were significantly higher than that of non-treated bioadsorbent. The surface morphology of the raw materials and synthesized bioadsorbent were accessed by SEM. Furthermore, the novel process meets the recent industrial adsorbent requirements such as low activation temperature, high fixed carbon content, high yield, high adsorption properties and high surface area, which are the key factors for large-scale production of bioadsorbent and its usage.

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Velma Beri Kimbi Yaah ◽  
Satu Ojala ◽  
Hamza Khallok ◽  
Tiina Laitinen ◽  
Marcin Selent ◽  
...  

This paper presents results related to the development of a carbon composite intended for water purification. The aim was to develop an adsorbent that could be regenerated using light leading to complete degradation of pollutants and avoiding the secondary pollution caused by regeneration. The composites were prepared by hydrothermal carbonization of palm kernel shells, TiO2, and W followed by activation at 400 °C under N2 flow. To evaluate the regeneration using light, photocatalytic experiments were carried out under UV-A, UV-B, and visible lights. The materials were thoroughly characterized, and their performance was evaluated for diclofenac removal. A maximum of 74% removal was observed with the composite containing TiO2, carbon, and W (HCP25W) under UV-B irradiation and non-adjusted pH (~5). Almost similar results were observed for the material that did not contain tungsten. The best results using visible light were achieved with HCP25W providing 24% removal of diclofenac, demonstrating the effect of W in the composite. Both the composites had significant amounts of oxygen-containing functional groups. The specific surface area of HCP25W was about 3 m2g−1, while for HCP25, it was 160 m2g−1. Increasing the specific surface area using a higher activation temperature (600 °C) adversely affected diclofenac removal due to the loss of the surface functional groups. Regeneration of the composite under UV-B light led to a complete recovery of the adsorption capacity. These results show that TiO2- and W-containing carbon composites are interesting materials for water treatment and they could be regenerated using photocatalysis.


2017 ◽  
Vol 889 ◽  
pp. 215-220 ◽  
Author(s):  
Siti Anis Mohd Amran ◽  
Khudzir Ismail ◽  
Azil Bahari Alias ◽  
Syed Shatir Asghrar Syed-Hassan ◽  
Ali H. Jawad

Single and mixed coconut shell (CS) and palm kernel shell (PKS) were successfully converted to activated carbon by using potassium hydroxide (KOH) as activating agent. Mixed activated carbon was produced from coconut shell: palm kernel shell at different KOH concentrations of 30%, 40% and 50%. Activation process was performed in a conventional microwave oven at fixed power and time of 600W and 20 minutes respectively. The results showed that activated carbon produced from single and mixed biomass at 40% concentration of KOH exhibited higher adsorption capacity for iodine number and percentage removal of MB with comparison to 30% and 50% of KOH concentrations. The highest BET surface area of 441.19 m2/g was obtained by CSAc-40. Further both CSAc-40 and PKSAc-40 produced an average pore size diameter of less than 2.0 nm which is in the range of micropore region. On contrary, the mixed CSPKSAc-40 produced an average pore size diameter of 6.0 nm which is in the region of mesopore. All the CSAc-40, PKSAc-40 and mixed CSPKSAc-40 showed similar adsorption trend for iodine number and percentage removal of MB. Interestingly, this finding showed that in the mixed activated carbon some chemical reactions might have occurred during the activation process producing mesoporous instead of microporous as obtained by the single biomass activated carbon.


Energy ◽  
2016 ◽  
Vol 113 ◽  
pp. 108-115 ◽  
Author(s):  
Seung-Jin Oh ◽  
Gyung-Goo Choi ◽  
Joo-Sik Kim

2021 ◽  
Vol 61 (2) ◽  
pp. 91-104
Author(s):  
A. Nyamful ◽  
E. K. Nyogbe ◽  
L. Mohammed ◽  
M. N. Zainudeen ◽  
S. A. Darkwa ◽  
...  

Palm kernel shell and coconut shell are used as a precursor for the production of activated carbon, a way of mitigating the tons of waste produced in Ghana. The raw Palm kernel shell and coconut shell were activated chemically using H3PO4. A maximum activated carbon yield of 26.3 g was obtained for Palm kernel shell and 22.9 g for coconut shell at 400oC, an impregnation ratio of 1.2 and 1-hour carbonization time. Scanning electron microscopy reveals well-developed cavities of the H3PO4 activated coconut shell and Palm kernel shell compared to the non-activated carbon. Iodine number of 743.02 mg/g and 682.11 mg/g, a porosity of 0.31 and 0.49 and the electrical conductivity of 2010 μS/cm and 778 μS /cm were obtained for the AC prepared from the coconut shell and Palm kernel shell respectively. The results of this work show that high-quality activated carbon can be manufactured locally from coconut shell and Palm kernel shell waste, and a scale-up of this production will go a long way to reduce the tons of coconut shell and Palm kernel shell waste generated in the country.


2017 ◽  
Vol 4 (2) ◽  
pp. 195-204 ◽  
Author(s):  
Norulaina Aliasa ◽  
Muhammad Abbas Ahmad Zaini ◽  
Mohd. Johari Kamaruddin

The present work was aimed to evaluate the effectiveness of two activating agents, namely potassium carbonate (K2CO3) and sodium hydroxide (NaOH) in the chemical activation of palm kernel shell (PKS). The adsorbents were prepared by dried impregnation at different solid mass ratios of activating agent to precursor, followed by thermal treatment at 500°C for 2 h. The adsorbents were characterized for specific surface area, carbon content, ash content and surface functional groups. Results show that the specific surface of K2CO3-activated samples are in the range of 5.3 to 53 m2/g, while that of NaOH-activated samples are between 145 and 458 m2/g. The removal of methylene blue is in accordance with the development of surface area of adsorbents, with the maximum capacity between 7.8 and 69 mg/g, and fitted well with the Langmuir isotherm. The findings conclude that, under the thermal conditions studied, NaOH is better than K2CO3 in the chemical activation of PKS.


Sign in / Sign up

Export Citation Format

Share Document