The non-stationary polymerization of styrene by HCIO 4 in CH 2 CI 2

The non-stationary precursor reaction (stage I) in the polymerization of styrene by perchloric acid in methylene chloride has been examined, by stopped-flow methods over the range 0 to –80 °C. At all temperatures there is evidence of a transient, electrically conducting, intermediate species, absorbing at 340 nm, which reaches its peak concentration at times ranging from 0.1s at 0° C to 0.5–3s at –80 °C (variable with reagent concentra­tions). At the low monomer concentrations (< 0.2M) accessible to the technique, stage I can be quantitatively discriminated from the subsequent steady stage II only below ca . –60 °C. At these low temperatures, contrary to expectations, the conversion during stage I proves to be by a dual mech­anism, the ionic reaction producing no more than about half the mass of polymer and a much smaller fraction of the number of polymer chains. The overall time-scale of stage I appears to be determined primarily by that of removal of free HCIO 4 by the non-ionic mechanism, rather than by the kinetics of the ionic polymerisation. The overall conversions cannot therefore be analysed to yield ionic rate constants. In reactions in presence of the salt n -Bu 4 NCIO 4 , the instantaneous rates can be separated into their non-ionic and ionic components, and approxi­mate values derived for the paired-ion propagation rate constants. k ± p 2000 at –80 °C; 4000–5000 at –60 °C; (unit: dm 3 mol –1 s –1 ). A more speculative analysis of the rates in salt-free systems permits estimates of the free ion propagation constants some 10–20 times the above values, and of ion-pair dissociation constants in the region of 1–5 x 10 –7 mol dm –3 at –60 to –80 °C.

Author(s):  
Iztok Hace

Free radical polymerization kinetics of diallyl terephthalate (DAT) in solution was investigated with two different peroxide initiators: dicyclohexyl peroxydicarbonate (CHPC) and benzoyl peroxide (BPO) in temperature range from 50°C to 110°C, where ortho-xylene was used as a solvent. Conversion points were measured using Fourier Transform Infrared (FTIR) measurements. Previously developed kinetic model for bulk DAT polymerization, was extended to solution DAT polymerization. The ratio of solvent chain - transfer rate constants to propagation rate constants of the polymerization system were found between 1.25 10-4 to 1.68 10-4 for various reaction conditions. They were obtained using the calculated initial polymerization rates and the number average molecular weight measurements made by GPC. The effect of different solvent fractions and initiator concentrations on the diffusion limitations were investigated. Only two kinetic parameters, kpd0 and ktd0 were obtained by fitting the kinetic model onto measured conversions for various reaction conditions at 0.2, 0.5 and 0.8 solvent fractions. Thus obtained kpd0 and ktd0 kinetic parameters were extrapolated to zero solvent fractions and from obtained values of kinetic parameters the conversion points for bulk DAT polymerization were calculated and compared to measured conversion points.


1962 ◽  
Vol 40 (2) ◽  
pp. 246-255 ◽  
Author(s):  
D. M. Miller ◽  
R. A. Latimer

Rate constants, activation energies, and dissociation constants were determined in a kinetic study of the synthesis and decomposition of a number of N-substituted dithiocarbamates. These data combined with certain spectral evidence are evaluated and reaction mechanisms suggested.


1974 ◽  
Vol 27 (2) ◽  
pp. 269 ◽  
Author(s):  
DJ Francis ◽  
GH Searle

The synthesis and separation of the complexes α-[Co(dmtr)CO3] ClO4 and β-[Co(dmtr)CO3] C1O4,H2O (dmtr = 4,7-dimethyltriethylenetetramine or N,N'-bis(2-aminoethyl)-N,N'-dimethylethane-1,2-diamine) are described. The kinetics of the acid hydrolysis of both complexes, studied in perchloric acid at 25�C and μ = 1.0M (LiC1O4), follow rate laws of form -d[complex]dt=(k0 + k1[H+I)[complex] The values of ko and k1 for the K-complex are 1.0 x 10-3 s-1 and 1.8 x 10-2 1. mol-1 s-1 respectively, while for the β-complex the corresponding values are 3.6 x 10-5 s-1 and 5.6 x 10-4 1. mol-1 s-1. Comparisons of these rate constants with the values for similar carbonato(tetramine)cobalt(111) complexes previously studied suggest that the ko path could involve O-C bond cleavage in the present dmtr complexes. The values of the acid dissociation constants of dmtr,4HCl, determined by potentiometric titration, are 1.61, 5.86, 8.18 and 9.95.


1994 ◽  
Vol 30 (11) ◽  
pp. 143-146
Author(s):  
Ronald D. Neufeld ◽  
Christopher A. Badali ◽  
Dennis Powers ◽  
Christopher Carson

A two step operation is proposed for the biodegradation of low concentrations (&lt; 10 mg/L) of BETX substances in an up flow submerged biotower configuration. Step 1 involves growth of a lush biofilm using benzoic acid in a batch mode. Step 2 involves a longer term biological transformation of BETX. Kinetics of biotransformations are modeled using first order assumptions, with rate constants being a function of benzoic acid dosages used in Step 1. A calibrated computer model is developed and presented to predict the degree of transformation and biomass level throughout the tower under a variety of inlet and design operational conditions.


1981 ◽  
Vol 46 (5) ◽  
pp. 1229-1236 ◽  
Author(s):  
Jan Balej ◽  
Milada Thumová

The rate of hydrolysis of S2O82- ions in acidic medium to peroxomonosulphuric acid was measured at 20 and 30 °C. The composition of the starting solution corresponded to the anolyte flowing out from an electrolyser for production of this acid or its ammonium salt at various degrees of conversion and starting molar ratios of sulphuric acid to ammonium sulphate. The measured data served to calculate the rate constants at both temperatures on the basis of the earlier proposed mechanism of the hydrolysis, and their dependence on the ionic strength was studied.


1980 ◽  
Vol 45 (12) ◽  
pp. 3338-3346
Author(s):  
Miroslav Kašpar ◽  
Jiří Trekoval

The effect of small additions of 1-octene, butyl ethyl ether and triethylamine on the polymerization kinetics of isoprene (2-methyl-1,3-butadiene) in benzene initiated with butyllithium was investigated by employing the GLC analysis. The addition of 1-octane was reflected only in a shorter induction period of the reaction; the effect on the propagation rate was insignificant. With the increasing amount of butyl ethyl ether, the polymerization rate increases linearly, while the reaction order with respect to the concentration of triethylamine is variable and increases from 0.33 to 0.66 with the increasing concentration of the initiator. For a constant concentration of triethylamine, the reaction order with respect to the initial concentration of the initiator was found to vary considerably, reaching even negative values. A reaction scheme was suggested, taking into account the competition between two different solvates of alkyllithium.


1983 ◽  
Vol 48 (11) ◽  
pp. 3279-3286
Author(s):  
Slavko Hudeček ◽  
Miloslav Bohdanecký ◽  
Ivana Hudečková ◽  
Pavel Špaček ◽  
Pavel Čefelín

The reaction between hexamethylenediisocyanate and 1-pentanol in toluene was studied by means of reversed-phase liquid chromatography. By employing this method, it was possible to determine all components of the reaction mixture including both products, i.e. N-(6-isocyanate hexyl)pentylcarbamate and N,N'-bis(pentyloxycarbonyl)hexamethylenediamine. Relations for the calculation of kinetic constants were derived assuming a competitive consecutive second-order reaction. It was demonstrated that the reaction involved in this case is indeed a second-order reaction, and the rate constants of the first and second consecutive reactions were determined.


1989 ◽  
Vol 54 (5) ◽  
pp. 1311-1317
Author(s):  
Miroslav Magura ◽  
Ján Vojtko ◽  
Ján Ilavský

The kinetics of liquid-phase isothermal esterification of POCl3 with 2-isopropylphenol and 4-isopropylphenol have been studied within the temperature intervals of 110 to 130 and 90 to 110 °C, respectively. The rate constants and activation energies of the individual steps of this three-step reaction have been calculated from the values measured. The reaction rates of the two isomers markedly differ: at 110 °C 4-isopropylphenol reacts faster by the factors of about 7 and 20 for k1 and k3, respectively. This finding can be utilized in preparation of mixed triaryl phosphates, since the alkylation mixture after reaction of phenol with propene contains an excess of 2-isopropylphenol over 4-isopropylphenol.


Sign in / Sign up

Export Citation Format

Share Document