Bounds for growth rate of a perturbation in thermohaline convection

A new scheme of combining the governing equations of thermohaline convection is shown to lead to the following bounds for the complex growth rate p of an arbitrary oscillatory perturbation: | p | 2 < R s σ (Veronis thermohaline configuration), | p | 2 < – R σ (Stern thermohaline configuration), where R and R s are the thermal and the concentration Rayleigh numbers, and σ is the Prandtl number. The analysis is applicable to rotatory thermal and rotatory thermohaline convections for which the corresponding bounds are | p | 2 < T σ 2 (rotatory simple Bénard configuration), | p | 2 < max ( T σ 2 , R s σ) (rotatory Vernois thermohaline configuration), | p | 2 < max ( T σ 2 , – R σ) (rotatory Stern thermohaline configuration), where T is the Taylor number. The above results are valid for all combination of dynamically free and rigid boundaries.

2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2579-2585
Author(s):  
Jyoti Prakash ◽  
Shweta Manan ◽  
Virender Singh

The present paper carries forward Prakash et al. [21] analysis for triple diffusive convection problem in completely confined fluids and derives upper bounds for the complex growth rate of an arbitrary oscillatory disturbance which may be neutral or unstable through the use of some non-trivial integral estimates obtained from the coupled system of governing equations of the problem.


2015 ◽  
Vol 45 (1) ◽  
pp. 39-52
Author(s):  
Joginder Singh Dhiman ◽  
Vijay Kumar

Abstract The present paper mathematically investigates the effect of temperature dependent viscosity on the onset of instability in thermohaline convection problems of Veronis and Stern type configurations, using linear stability theory. A sufficient condition for the stability of oscillatory modes for thermohaline configuration is derived. When the compliment of this sufficient condition is true, the oscillatory motions of neutral or growing amplitude may exist, and hence the bounds for the complex growth rate of these neutral or unstable modes are derived, when viscosity of the fluid is an arbitrary function of temperature. Some general conclusions for the cases of linear and exponential variations of viscosity are worked out. The present analysis thus shows that the oscillations in thermohaline convection problems can be modulated or arrested by considering the temperature dependent viscosity of the fluid.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
M. Bachiri ◽  
A. Bouabdallah

In this work, we attempt to establish a general analytical approximation of the convection heat transfer from an isothermal wedge surface to fluids for all Prandtl numbers. The flow has been assumed to be laminar and steady state. The governing equations have been written in dimensionless form using a similarity method. A simple ad hoc technique is used to solve analytically the governing equations by proposing a general formula of the velocity profile. This formula verifies the boundary conditions and the equilibrium of the governing equations in the whole spatial region and permits us to obtain analytically the temperature profiles for all Prandtl numbers and for various configurations of the wedge surface. A comparison with the numerical results is given for all spatial regions and in wide Prandtl number values. A new Nusselt number expression is obtained for various configurations of the wedge surface and compared with the numerical results in wide Prandtl number values.


1994 ◽  
Vol 18 (3) ◽  
pp. 207-224 ◽  
Author(s):  
M. Lacroix

Heat transfer driven by temperature gradients and simultaneous temperature and concentration gradients has been studied numerically for horizontal prismatic cavities of trapezoidal section having a hot horizontal base, a cool inclined top and insulated vertical walls. Results are presented for a cavity with width-to-mean height ratio of 4, thermal and concentration Rayleigh numbers up to 106 and 5.105 respectively, and top surface inclinations from 0 to 15 deg to the horizontal. The Prandtl and the Schmidt number used are 0.71 and 0.6 respectively. The governing equations are expressed in terms of stream function and vorticity and body-fitted coordinates are used for mapping the sloping top wall. As the inclination of the top surface is increased, the Nusselt and Sherwood numbers decrease. The effect of opposing thermal and concentration gradients on the Nusselt and Sherwood numbers is however more important than the effect of the inclination of the top surface. Theoretical Nusselt and Sherwood numbers are compared with available experimental data.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2942 ◽  
Author(s):  
Ammar I. Alsabery ◽  
Ishak Hashim ◽  
Ahmad Hajjar ◽  
Mohammad Ghalambaz ◽  
Sohail Nadeem ◽  
...  

The present investigation addressed the entropy generation, fluid flow, and heat transfer regarding Cu-Al 2 O 3 -water hybrid nanofluids into a complex shape enclosure containing a hot-half partition were addressed. The sidewalls of the enclosure are made of wavy walls including cold isothermal temperature while the upper and lower surfaces remain insulated. The governing equations toward conservation of mass, momentum, and energy were introduced into the form of partial differential equations. The second law of thermodynamic was written for the friction and thermal entropy productions as a function of velocity and temperatures. The governing equations occurred molded into a non-dimensional pattern and explained through the finite element method. Outcomes were investigated for Cu-water, Al 2 O 3 -water, and Cu-Al 2 O 3 -water nanofluids to address the effect of using composite nanoparticles toward the flow and temperature patterns and entropy generation. Findings show that using hybrid nanofluid improves the Nusselt number compared to simple nanofluids. In the case of low Rayleigh numbers, such enhancement is more evident. Changing the geometrical aspects of the cavity induces different effects toward the entropy generation and Bejan number. Generally, the global entropy generation for Cu-Al 2 O 3 -water hybrid nanofluid takes places between the entropy generation values regarding Cu-water and Al 2 O 3 -water nanofluids.


2000 ◽  
Vol 422 ◽  
pp. 141-166 ◽  
Author(s):  
YI-CHUNG SU ◽  
JACOB N. CHUNG

A comprehensive numerical study on the linear stability of mixed-convection flow in a vertical pipe with constant heat flux is presented with particular emphasis on the instability mechanism and the Prandtl number effect. Three Prandtl numbers representative of different regimes in the Prandtl number spectrum are employed to simulate the stability characteristics of liquid mercury, water and oil. The results suggest that mixed-convection flow in a vertical pipe can become unstable at low Reynolds number and Rayleigh numbers irrespective of the Prandtl number, in contrast to the isothermal case. For water, the calculation predicts critical Rayleigh numbers of 80 and −120 for assisted and opposed flows, which agree very well with experimental values of Rac = 76 and −118 (Scheele & Hanratty 1962). It is found that the first azimuthal mode is always the most unstable, which also agrees with the experimental observation that the unstable pattern is a double spiral flow. Scheele & Hanratty's speculation that the instability in assisted and opposed flows can be attributed to the appearance of inflection points and separation is true only for fluids with O(1) Prandtl number. Our study on the effect of the Prandtl number discloses that it plays an active role in buoyancy-assisted flow and is an indication of the viability of kinematic or thermal disturbances. It profoundly affects the stability of assisted flow and changes the instability mechanism as well. For assisted flow with Prandtl numbers less than 0.3, the thermal–shear instability is dominant. With Prandtl numbers higher than 0.3, the assisted-thermal–buoyant instability becomes responsible. In buoyancy-opposed flow, the effect of the Prandtl number is less significant since the flow is unstably stratified. There are three distinct instability mechanisms at work independent of the Prandtl number. The Rayleigh–Taylor instability is operative when the Reynolds number is extremely low. The opposed-thermal–buoyant instability takes over when the Reynolds number becomes higher. A still higher Reynolds number eventually leads the thermal–shear instability to dominate. While the thermal–buoyant instability is present in both assisted and opposed flows, the mechanism by which it destabilizes the flow is completely different.


1997 ◽  
Vol 353 ◽  
pp. 45-66 ◽  
Author(s):  
I. A. ELTAYEB ◽  
D. E. LOPER

This is the final part of a three-part study of the stability of vertically oriented double-diffusive interfaces having an imposed vertical stable temperature gradient. In this study, flow is forced within a fluid of infinite extent by a prescribed excess of compositionally buoyant material within a circular cylindrical interface. Compositional diffusivity is ignored while thermal diffusivity and viscosity are finite. The instability of the interface is determined by quantifying the exponential growth rate of a harmonic deflection of infinitesimal amplitude. Attention is focused on the zonal wavenumber of the fastest growing mode.The interface is found to be unstable for some wavenumber for all values of the Prandtl number and interface radius. The zonal wavenumber of the fastest growing mode increases roughly linearly with interface radius, except for small values of the Prandtl number (<0.065). For small and moderate values of the radius, the preferred mode is either axisymmetric or has zonal wavenumber of 1, representing a helical instability. The growth rate of the fastest-growing mode is largest for interfaces having radii of from 2 to 3 salt-finger lengths.


1958 ◽  
Vol 4 (3) ◽  
pp. 225-260 ◽  
Author(s):  
W. V. R. Malkus ◽  
G. Veronis

When a layer of fluid is heated uniformly from below and cooled from above, a cellular regime of steady convection is set up at values of the Rayleigh number exceeding a critical value. A method is presented here to determine the form and amplitude of this convection. The non-linear equations describing the fields of motion and temperature are expanded in a sequence of inhomogeneous linear equations dependent upon the solutions of the linear stability problem. We find that there are an infinite number of steady-state finite amplitude solutions (having different horizontal plan-forms) which formally satisfy these equations. A criterion for ‘relative stability’ is deduced which selects as the realized solution that one which has the maximum mean-square temperature gradient. Particular conclusions are that for a large Prandtl number the amplitude of the convection is determined primarily by the distortion of the distribution of mean temperature and only secondarily by the self-distortion of the disturbance, and that when the Prandtl number is less than unity self-distortion plays the dominant role in amplitude determination. The initial heat transport due to convection depends linearly on the Rayleigh number; the heat transport at higher Rayleigh numbers departs only slightly from this linear dependence. Square horizontal plan-forms are preferred to hexagonal plan-forms in ordinary fluids with symmetric boundary conditions. The proposed finite amplitude method is applicable to any model of shear flow or convection with a soluble stability problem.


Evolution ◽  
2004 ◽  
Vol 58 (4) ◽  
pp. 862 ◽  
Author(s):  
M. Julian Caley ◽  
Lin Schwarzkopf

2016 ◽  
Vol 13 (2) ◽  
pp. 21-27
Author(s):  
lfsana Karim ◽  
M.S. Khan ◽  
M.M. Alam ◽  
M.A. Rouf ◽  
M. Ferdows ◽  
...  

Abstract In the present computational study, the inclined angle effect of unsteady heat and mass transfer flow through salt water in an ocean was studied. The governing equations together with continuity, momentum, salinity and temperature were developed using the boundary layer approximation. Cartesian coordinate system was introduced to interpret the physical model where x-axis chosen along the direction of salt water flow and y-axis is inclined to x-axis. Two angle of inclination was considered such as 90° and 120°. The time dependent governing equations under the initial and boundary conditions were than transformed into the dimensionless form. A numerical solution approach so-called explicit finite difference method (EFDM) was employed to solve the obtained dimensionless equations. Different physical parameter was found in the model such as Prandtl number, Modified Prandtl number, Grashof number, Heat source parameter and Soret number. A stability and convergence analysis was developed in this study to describe the aspects of the finite difference scheme and this analysis is significant due to accuracy of the EFDM approach. The convergence criteria were observed to be in terms of dimensionless parameter as Pr ≥ 0.0128 and Ps ≥ 0.016. The distributions of the temperature and salinity profiles of salt water flow over different time steps were investigated for the effect of different dimensionless parameters and shown graphically.


Sign in / Sign up

Export Citation Format

Share Document