scholarly journals Supersonic and subsonic stages of dynamic contact between bodies

Author(s):  
M Adda-Bedia ◽  
Stefan G Llewellyn Smith

Using an acoustic model for the full elastic problem, the early times of the two-dimensional impact of a disc on a rigid plane, or impact between two identical discs, are analysed. We examine some aspects of wave propagation during the impact process and specify stress distributions near the impact region. Unlike the impact of two spheres for which the quasi-static local contact approach of Hertz is well adapted, a complete dynamical approach is necessary for the dynamic contact of two discs. At short times after impact, we show the existence of supersonic effects and we determine the shape of the corresponding stress waves that travel from the impact region through the unstressed body. During the supersonic phase, the contact region grows faster than the speed of sound and the surface outside the contact region is undisturbed. We then solve the transition from supersonic to subsonic regimes and determine the stress distribution near the impact region. Finally, we discuss some physical implications of these results.

2021 ◽  
Vol 39 (03) ◽  
pp. 225-239
Author(s):  
Jan Kvalsvold ◽  
Odd M. Faltinsen

Slamming against the wet deck of a multihull vessel in head sea waves is studied analytically and numerically. The theoretical slamming model is a two-dimensional, asymptotic method valid for small local angles between the undisturbed water surface and the wet deck in the impact region. The disturbance of the water surface as well as the local hydroelastic effects in the slamming area are accounted for. The elastic deflections of the wet deck are expressed in terms of "dry" normal modes. The structural formu­lation accounts for the shear deformations and the rotatory inertia effects in the wet deck. The findings show that the slamming loads on the wet deck and the resulting elastic stresses in the wet deck are strongly influenced by the elasticity of the wet deck structure.


Author(s):  
I. K. Chatjigeorgiou ◽  
M. J. Cooker ◽  
A. A. Korobkin

The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study.


2021 ◽  
Vol 16 ◽  
Author(s):  
Joice Sophia Ponraj ◽  
Muniraj Vignesh Narayanan ◽  
Ranjith Kumar Dharman ◽  
Valanarasu Santiyagu ◽  
Ramalingam Gopal ◽  
...  

: Increasing energy crisis across the globe requires immediate solutions. Two-dimensional (2D) materials are in great significance because of its application in energy storage and conversion devices but the production process significantly impacts the environment thereby posing a severe problem in the field of pollution control. Green synthesis method provides an eminent way of reduction in pollutants. This article reviews the importance of green synthesis in the energy application sector. The focus of 2D materials like graphene, MoS2, VS2 in energy storage and conversion devices are emphasized based on supporting recent reports. The emerging Li-ion batteries are widely reviewed along with their promising alternatives like Zn, Na, Mg batteries and are featured in detail. The impact of green methods in the energy application field are outlined. Moreover, future outlook in the energy sector is envisioned by proposing an increase in 2D elemental materials research.


2010 ◽  
Vol 42 ◽  
pp. 204-208 ◽  
Author(s):  
Xiang Dong Li ◽  
Quan Cai Wang

In this paper, the characteristic of grinding force in two-dimensional ultrasonic vibration assisted grinding nano-ceramic was studied by experiment based on indentation fracture mechanics, and mathematical model of grinding force was established. The study shows that grinding force mainly result from the impact of the grains on the workpiece in ultrasonic grinding, and the pulse power is much larger than normal grinding force. The ultrasonic vibration frequency is so high and the contact time of grains with the workpiece is so short that the pulse force will be balanced by reaction force from workpiece. In grinding workpiece was loaded by the periodical stress field, which accelerates the fatigue fracture.


2014 ◽  
Vol 590 ◽  
pp. 546-550
Author(s):  
Zhi Qiang Fan ◽  
Hai Bo Yang ◽  
Fei Zhao ◽  
Rong Zhu ◽  
Dong Bai Sun

The practical requirements of the project the nozzle entrance temperature is high, the gas specific heat ratio varies greatly, so it must consider the specific heat ratio change impact on two-dimensional nozzle contour design. Divided into consideration specific heat ratio change and not consider two kinds of scheme design of 1.4Ma nozzle profile and build the model using the arc line method, numerical simulation is carried out through the CFD software Fluent, analysis of two kinds of design scheme comparison. The results show that, in the supersonic nozzle at low Maher numbers, two schemes of nozzle design profile similarity, parameters change little flow tube, export the Maher number and the flow quality can meet the design requirements, proof of specific heat ratio has little effect on the design results in the design of the nozzle under the condition of low Maher number.


NANO ◽  
2021 ◽  
Author(s):  
Arslan Usman ◽  
Abdul Sattar ◽  
Hamid Latif ◽  
Muhammad Imran

The impact of phonon and their surrounding environment on exciton and its complexes were investigated in monolayer WSe2 semiconductor. Phonon up-conversion has been studied in past for conventional III–V semiconductors, but its role in two-dimensional layered transition metal dichalcogenides has rarely been explored. We investigated the photoluminescence up-conversion mechanism in WSe2 monolayer and found that a lower energy photon gain energy upto 64[Formula: see text]meV to be up-converted to emission photon at room temperature. Moreover, the phonon-exciton coupling mechanism has also been investigated and the role of dielectric screening has been explored to get complete insight of coulomb’s interaction in these electron-hole pairs. Investigations of charge carrier’s lifetime reveal that boron nitride encapsulated monolayer has shorter recombination time as low as 41 ps as compared to a bare monolayer on SiO2 substrate. These results are very promising for realizing spintronics-based application from two-dimensional layered semiconductors.


1994 ◽  
Vol 116 (4) ◽  
pp. 500-507 ◽  
Author(s):  
E. C. DeMeter

Spherical-tipped locators and clamps are often used for the restraint of castings during machining. For structurally rigid castings, contact region deformation and micro-slippage are the predominant modes of workpiece displacement. In turn contact region deformation and micro-slippage are heavily influenced by contact region loading. This paper presents a linear model for predicting the impact of locator and clamp placement on workpiece displacement throughout a series of machining operations. It illustrates how the continuum of external loads exerted on a workpiece during machining can be bounded within a convex hull, and how the extreme points of this hull are used within the model. Finally it describes the simulation experiments which were used for model validation.


Author(s):  
Joseph Hassan ◽  
Guy Nusholtz ◽  
Ke Ding

During a vehicle crash stress waves can be generated at the impact point and propagate through the vehicle structure. The generation of these waves is dependent, in general, on the crash type and, in particular, on the impact contact characteristics. This has consequences with respect to different crash barrier interfaces for vehicle evaluation. The two barriers most commonly used to evaluate the response of a vehicle in a frontal impact are the rigid barrier and the offset deformable barrier. They constitute different crash modes, full frontal and offset. Consequently it would be expected that there are different deformation patterns between the two. However, an additional possible contributor to the difference is that an impact into a rigid barrier generates waves of significantly greater stress than impacts with the deformable one. If stress waves are a significant component of real world final deformation patterns then, the choice of barrier interface and its effective stiffness is critical. To evaluate this conjecture, models of two types of rails each undergoing two different types of impacts, are analyzed using an explicit dynamic finite element code. Results show that the energy perturbation along the rail depends on the barrier type and that the early phase of wave propagation has very little effect on the final deformation pattern. This implies that in the real world conditions, the stress wave propagation along the rail has very little effect on the final deformed shape of the rail.


2014 ◽  
Vol 1042 ◽  
pp. 188-193 ◽  
Author(s):  
Xing Jun Hu ◽  
Jing Chang

In order to analyze the impact of engine cabin parts on aerodynamic characteristics, the related parts are divided into three categories except the engine cooling components: front thin plates (average thickness of 2mm), bottom-suspension and interior panels. The aerodynamic drag coefficient (Cd) were obtained upon the combination schemes consisting of the three types of parts by numerical simulation. Results show that Cd by simulation is closer to the test value gained by the wind tunnel experiment when front thin plates were simplified to the two-dimensional interface with zero thickness. The error is only 5.23%. Meanwhile this scheme reduces grid numbers, thus decreasing the calculating time. As the front thin plates can guide the flow, there is no difference on the Cd values gained from the model with or without bottom-suspension or interior panels when the engine cabin contains the front thin plates; while only both bottom-suspension and interior panels are removed, the Cd value can be reduced when the cabin doesn’t contain the front thin plates.


2013 ◽  
Vol 727 ◽  
pp. 236-255 ◽  
Author(s):  
D. Vigolo ◽  
I. M. Griffiths ◽  
S. Radl ◽  
H. A. Stone

AbstractUnderstanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar–turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow.


Sign in / Sign up

Export Citation Format

Share Document