scholarly journals Elastocapillary coalescence of plates and pillars

Author(s):  
Z. Wei ◽  
T. M. Schneider ◽  
J. Kim ◽  
H.-Y. Kim ◽  
J. Aizenberg ◽  
...  

When a fluid-immersed array of supported plates or pillars is dried, evaporation leads to the formation of menisci on the tips of the plates or pillars that bring them together to form complex patterns. Building on prior experimental observations, we use a combination of theory and computation to understand the nature of this instability and its evolution in both the two- and three-dimensional setting of the problem. For the case of plates, we explicitly derive the interaction torques based on the relevant physical parameters associated with pillar deformation, contact-line pinning/depinning and fluid volume changes. A Bloch-wave analysis for our periodic mechanical system captures the window of volumes where the two-plate eigenvalue characterizes the onset of the coalescence instability. We then study the evolution of these binary clusters and their eventual elastic arrest using numerical simulations that account for evaporative dynamics coupled to capillary coalescence. This explains both the formation of hierarchical clusters and the sensitive dependence of the final structures on initial perturbations, as seen in our experiments. We then generalize our analysis to treat the problem of pillar collapse in three dimensions, where the fluid domain is completely connected and the interface is a minimal surface with the uniform mean curvature. Our theory and simulations capture the salient features of experimental observations in a range of different situations and may thus be useful in controlling the ensuing patterns.

2014 ◽  
Vol 92 (10) ◽  
pp. 1249-1257 ◽  
Author(s):  
M.F. El-Sayed ◽  
N.T. Eldabe ◽  
M.H. Haroun ◽  
D.M. Mostafa

The nonlinear electrohydrodynamic Kelvin–Helmholtz instability of two superposed viscoelastic Walters B′ dielectric fluids in the presence of a tangential electric field is investigated in three dimensions using the potential flow analysis. The method of multiple scales is used to obtain a dispersion relation for the linear problem, and a nonlinear Ginzburg–Landau equation with complex coefficients for the nonlinear problem. The linear and nonlinear stability conditions are obtained and discussed both analytically and numerically. In the linear stability analysis, we found that the fluid velocities and kinematic viscosities have destabilizing effects, and the electric field, kinematic viscoelasticities, and surface tension have stabilizing effects; and that the system in the three-dimensional disturbances is more stable than in the corresponding case of two-dimensional disturbances. While in the nonlinear analysis, for both two- and three-dimensional disturbances, we found that the fluid velocities, surface tension, and kinematic viscosities have destabilizing effects, and the electric field, kinematic viscoelasticities have stabilizing effects, and that the system in the three-dimensional disturbances is more unstable than its behavior in the two-dimensional disturbances for most physical parameters except the kinematic viscosities.


2014 ◽  
Vol 14 (01) ◽  
pp. 1450002 ◽  
Author(s):  
R. ELLAHI ◽  
ARSHAD RIAZ ◽  
S. NADEEM

In this study, the mathematical observations for the peristaltic flow of a Williamson fluid model (e.g., chyme) in a cross-section of a rectangular duct having compliant walls were considered. The flow was assumed incompressible and unsteady. The constitutive equations were reduced under the assumptions of low Reynolds number and long wavelength approximations. The resulting dimensionless governing equations were solved using the homotopy perturbation method (HPM) and eigenfunction expansion method. The results obtained were explained graphically. The velocity distribution was plotted for physical parameters both in two and three dimensions. The streamline graphs are presented in the end, which explain the trapping bolus phenomenon. All theoretical and graphical results are then discussed simultaneously.


2017 ◽  
Vol 85 (1) ◽  
Author(s):  
Alireza Bayat ◽  
Stavros Gaitanaros

This work focuses on elastic wave propagation in three-dimensional (3D) low-density lattices and explores their wave directionality and energy flow characteristics. In particular, we examine the dynamic response of Kelvin foam, a simple-and framed-cubic lattice, as well as the octet lattice, spanning this way a range of average nodal connectivities and both stretching-and bending-dominated behavior. Bloch wave analysis on unit periodic cells is employed and frequency diagrams are constructed. Our results show that in the low relative-density regime analyzed here, only the framed-cubic lattice displays a complete bandgap in its frequency diagram. New representations of iso-frequency contours and group-velocity plots are introduced to further analyze dispersive behavior, wave directionality, and the presence of partial bandgaps in each lattice. Significant wave beaming is observed for the simple-cubic and octet lattices in the low frequency regime, while Kelvin foam exhibits a nearly isotropic behavior in low frequencies for the first propagating mode. Results of Bloch wave analysis are verified by explicit numerical simulations on finite size domains under a harmonic perturbation.


2001 ◽  
Vol 19 (10/12) ◽  
pp. 1197-1200 ◽  
Author(s):  
C. P. Escoubet ◽  
M. Fehringer ◽  
M. Goldstein

Abstract. The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP), where Cluster and the Solar and Heliospheric Observatory (SOHO) are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC), at the Rutherford Appleton Laboratory (UK), and implemented by the European Space Operations Centre (ESOC), in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Author(s):  
Jonna Nyman

Abstract Security shapes everyday life, but despite a growing literature on everyday security there is no consensus on the meaning of the “everyday.” At the same time, the research methods that dominate the field are designed to study elites and high politics. This paper does two things. First, it brings together and synthesizes the existing literature on everyday security to argue that we should think about the everyday life of security as constituted across three dimensions: space, practice, and affect. Thus, the paper adds conceptual clarity, demonstrating that the everyday life of security is multifaceted and exists in mundane spaces, routine practices, and affective/lived experiences. Second, it works through the methodological implications of a three-dimensional understanding of everyday security. In order to capture all three dimensions and the ways in which they interact, we need to explore different methods. The paper offers one such method, exploring the everyday life of security in contemporary China through a participatory photography project with six ordinary citizens in Beijing. The central contribution of the paper is capturing—conceptually and methodologically—all three dimensions, in order to develop our understanding of the everyday life of security.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


Sign in / Sign up

Export Citation Format

Share Document