scholarly journals Evolution under dietary restriction increases male reproductive performance without survival cost

2016 ◽  
Vol 283 (1825) ◽  
pp. 20152726 ◽  
Author(s):  
Felix Zajitschek ◽  
Susanne R. K. Zajitschek ◽  
Cindy Canton ◽  
Grigorios Georgolopoulos ◽  
Urban Friberg ◽  
...  

Dietary restriction (DR), a reduction in nutrient intake without malnutrition, is the most reproducible way to extend lifespan in a wide range of organisms across the tree of life, yet the evolutionary underpinnings of the DR effect on lifespan are still widely debated. The leading theory suggests that this effect is adaptive and results from reallocation of resources from reproduction to somatic maintenance, in order to survive periods of famine in nature. However, such response would cease to be adaptive when DR is chronic and animals are selected to allocate more resources to reproduction. Nevertheless, chronic DR can also increase the strength of selection resulting in the evolution of more robust genotypes. We evolved Drosophila melanogaster fruit flies on ‘DR’, ‘standard’ and ‘high’ adult diets in replicate populations with overlapping generations. After approximately 25 generations of experimental evolution, male ‘DR’ flies had higher fitness than males from ‘standard’ and ‘high’ populations. Strikingly, this increase in reproductive success did not come at a cost to survival. Our results suggest that sustained DR selects for more robust male genotypes that are overall better in converting resources into energy, which they allocate mostly to reproduction.

Evolution ◽  
2020 ◽  
Author(s):  
Eevi Savola ◽  
Clara Montgomery ◽  
Fergal M. Waldron ◽  
Katy M. Monteith ◽  
Pedro Vale ◽  
...  

1986 ◽  
Vol 43 (2) ◽  
pp. 285-292 ◽  
Author(s):  
S. M. Rhind ◽  
B. A. Morris ◽  
Jill Clayton ◽  
J. M. Doney ◽  
R. G. Gunn ◽  
...  

ABSTRACTBorder Leicester × Scottish Blackface (Greyface) ewes of three groups, each comprising 118 animals in a wide range of body condition scores, were mated at a synchronized oestrus in mid October. The ewes were passively immunized against testosterone (group P), actively immunized against androstenedione (group F), or not treated (group C). All ewes were slaughtered at return to service or at 35 to 45 days of pregnancy and ovulation rates and numbers of embryos present were determined. Mean ovulation rates of ewes in group P were higher than in those in group C (P < 0·05) and this difference was evident at most levels of body condition. The absolute increase in ovulation rate, compared with the control group, was similar at all condition scores. Mean ovulation rates of ewes in group F were higher than those in group C (P < 0·001) and the magnitude of the increase was greater in ewes in higher condition scores. The incidence of ova wastage was variable but differences between treatments in mean ovulation rate were generally reflected in mean litter size. The conception rates of immunized ewes were depressed compared with those of control animals, particularly in ewes with a body condition score less than 3·0 at mating. Consequently, there was no improvement in the potential lambing rate of immunized ewes following only one cycle of mating. Circulating antibody titres were not related to conception rate or body condition at mating and were related to ovulation rate only in group F ewes. It is concluded that immunization against steroids, using either passive or active techniques, can improve the reproductive performance of individual ewes but improvement in the performance of the flock as a whole may only be achieved under optimal conditions of nutrition and season.


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Edward R. Ivimey-Cook ◽  
Kris Sales ◽  
Hanne Carlsson ◽  
Simone Immler ◽  
Tracey Chapman ◽  
...  

Dietary restriction (DR) increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here, we investigated the effect of DR by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in Caenorhabditis elegans . We show that while TF robustly reduces mortality risk and improves late-life reproduction of the individuals subject to TF (P 0 ), it has a wide range of both positive and negative effects on their descendants (F 1 –F 3 ). Remarkably, great-grandparental exposure to TF in early life reduces fitness and increases mortality risk of F 3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of DR, underscoring the need to consider fitness of future generations in pursuit of healthy ageing.


2021 ◽  
Author(s):  
Bhabesh Mili ◽  
Tukheswar Chutia

Goat is popularly known as ‘poor man’s cow’, rears mostly by the rural people due to better adaptive capability to harsh environment. Heat stress either hot or cold; negatively influence the goat productive and reproductive performance. Both survivability and reproductive performance of goat most often depend on its ability to cope with heat stressor. Goats can rears in a wide range of environment and geography may it be hilly terrain or undulating topography due to cope with the heat stress via combination of behavioral, morphological, physiological, biochemical, metabolic, hormonal and molecular changes at the gene level. All these adaptive mechanisms and genes are important for the assessment of heat stress, adaptability and strategies for management, production of heat-tolerant transgenic goat using advance biotechnological tools for sustainable goat production in challenged environment due to climate change.


2021 ◽  
Author(s):  
Mark Phillips ◽  
Kenneth R. Arnold ◽  
Zer Vue ◽  
Heather Beasley ◽  
Edgar Garza Lopez ◽  
...  

Experimental evolution with Drosophila melanogaster has been used extensively for decades to study aging and longevity. In recent years, the addition of DNA and RNA sequencing to this framework has allowed researchers to leverage the statistical power inherent to experimental evolution study the genetic basis of longevity itself. Here we incorporated metabolomic data into to this framework to generate even deeper insights into the physiological and genetic mechanisms underlying longevity differences in three groups of experimentally evolved D. melanogaster populations with different aging and longevity patterns. Our metabolomic analysis found that aging alters mitochondrial metabolism through increased consumption of NAD+ and increased usage of the TCA cycle. Combining our genomic and metabolomic data produced a list of biologically relevant candidate genes. Among these candidates, we found significant enrichment for genes and pathways associated with neurological development and function, and carbohydrate metabolism. While we do not explicitly find enrichment for aging canonical genes, neurological dysregulation and carbohydrate metabolism are both known to be associated with accelerated aging and reduced longevity. Taken together, our results in total provide very plausible genetic mechanisms for what might be driving longevity differences in this experimental system. More broadly, our findings demonstrate the value of combining multiple types of omic data with experimental evolution when attempting to dissect mechanisms underlying complex and highly polygenic traits like aging.


2020 ◽  
Author(s):  
Edward R. Ivimey-Cook ◽  
Kris Sales ◽  
Hanne Carlsson ◽  
Simone Immler ◽  
Tracey Chapman ◽  
...  

AbstractDietary restriction increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here we investigated the effect of dietary restriction by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in C. elegans. We show that while TF robustly reduces mortality risk and improves late-life reproduction in the parental generation (P0), it has a wide range of both positive and deleterious effects on future generations (F1-F3). Remarkably, great-grandparental exposure to TF in early-life reduces fitness and increases mortality risk of F3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of dietary restriction underscoring the need to consider fitness of future generations in pursuit of healthy ageing.


Genetics ◽  
1985 ◽  
Vol 111 (4) ◽  
pp. 795-804
Author(s):  
Donald A Gailey ◽  
Jeffrey C Hall ◽  
Richard W Siegel

ABSTRACT Male Drosophila melanogaster that have courted newly-emerged males can modify their subsequent courtship behavior to avoid further courtship with immature males for up to 6 hr (previously reported). Here, it was hypothesized that such an experience-dependent modification would afford a mating advantage to normal males over males that carried a mutation that affects learning and memory. Coisogenic lines were constructed which varied at the dunce gene (dnc  + and dnc  M14 alleles) in order to test this hypothesis. Whether previously experienced with immature males or not, dnc  + and dnc  M14 males were indistinguishable in their response and mating efficiency when individually paired with virgin females. However, courtship performance of dnc  + and dnc  M14 males was different if they were first experienced with immature males and were then individually tested in an artificial population of nine immature males and one virgin female. In this situation, dnc  + males spent much less time in courtship with immature males and achieved copulation in one-third the time required for dnc  M14 males. As a control, the behavior and mating efficiency of courtship-naive dnc  + and dnc  M14 males in the artificial population was indistinguishable. In competition for a single virgin female, experienced dnc  M14 males showed a slight mating advantage over experienced dnc  + males. But when competition by experienced males for a single virgin female took place in the presence of nine immature males, dnc  + males were the successful maters in three-fourths of the trials.


2019 ◽  
Vol 286 (1912) ◽  
pp. 20191623 ◽  
Author(s):  
Ming Liu ◽  
Dustin R. Rubenstein ◽  
Wei-Chung Liu ◽  
Sheng-Feng Shen

Bet-hedging—a strategy that reduces fitness variance at the expense of lower mean fitness among different generations—is thought to evolve as a biological adaptation to environmental unpredictability. Despite widespread use of the bet-hedging concept, most theoretical treatments have largely made unrealistic demographic assumptions, such as non-overlapping generations and fixed or infinite population sizes. Here, we extend the concept to consider overlapping generations by defining bet-hedging as a strategy with lower variance and mean per capita growth rate across different environments. We also define an opposing strategy—the rising-tide—that has higher mean but also higher variance in per capita growth. These alternative strategies lie along a continuum of biological adaptions to environmental fluctuation. Using stochastic Lotka–Volterra models to explore the evolution of the rising-tide versus bet-hedging strategies, we show that both the mean environmental conditions and the temporal scales of their fluctuations, as well as whether population dynamics are discrete or continuous, are crucial in shaping the type of strategy that evolves in fluctuating environments. Our model demonstrates that there are likely to be a wide range of ways that organisms with overlapping generations respond to environmental unpredictability beyond the classic bet-hedging concept.


Sign in / Sign up

Export Citation Format

Share Document