scholarly journals Character displacement of a learned behaviour and its implications for ecological speciation

2019 ◽  
Vol 286 (1908) ◽  
pp. 20190761
Author(s):  
Cody K. Porter ◽  
Craig W. Benkman

Cultural evolution may accelerate population divergence and speciation, though most support for this hypothesis is restricted to scenarios of allopatric speciation driven by random cultural drift. By contrast, the role of cultural evolution in non-allopatric speciation (i.e. speciation with gene flow) has received much less attention. One clade in which cultural evolution may have figured prominently in speciation with gene flow includes the conifer-seed-eating finches in the red crossbill ( Loxia curvirostra ) complex. Here we focus on Cassia crossbills ( Loxia sinesciuris ; an ecotype recently split taxonomically from red crossbills) that learn social contact calls from their parents. Previous work found that individuals modify their calls throughout life such that they become increasingly divergent from a closely related, sympatric red crossbill ecotype. This open-ended modification of calls could lead to character displacement if it causes population-level divergence in call structure that, in turn, reduces (maladaptive) heterospecific flocking. Heterospecific flocking is maladaptive because crossbills use public information from flockmates to assess resource quality, and feeding rates are depressed when flockmates differ in their ability to exploit a shared resource (i.e. when flockmates are heterospecifics). We confirm the predictions of character displacement by documenting substantial population-level divergence in Cassia crossbill call structure over just two decades and by using field experiments to demonstrate that Cassia and red crossbills differentially respond to these evolved differences in call structure, reducing heterospecific flock formation. Moreover, because crossbills choose mates from within flocks, a reduction in heterospecific flocking should increase assortative mating and may have been critical for speciation of Cassia crossbills in the face of ongoing gene flow in as few as 5000 years. Our results provide evidence for a largely neglected yet potentially widespread mechanism by which reproductive isolation can evolve between sympatric lineages as a byproduct of adaptive cultural evolution.

Author(s):  
Richard W. Jobson ◽  
Paulo C. Baleeiro ◽  
Cástor Guisande

Utricularia is a morphologically and ecologically diverse genus currently comprising more than 230 species divided into three subgenera—Polypompholyx, Utricularia, and Bivalvaria—and 35 sections. The genus is distributed worldwide except on the poles and most oceanic islands. The Neotropics has the highest species diversity, followed by Australia. Compared to its sister genera, Utricularia has undergone greater rates of speciation, which are linked to its extreme morphological flexibility that has resulted in the evolution of habitat-specific forms: terrestrial, rheophytic, aquatic, lithophytic, and epiphytic. Molecular phylogenetic studies have resolved relationships for 44% of the species across 80% of the sections. Scant data are available for phylogeography or population-level processes such as gene flow, hybridization, or pollination. Because nearly 90% of the species are endemics, data are urgently needed to determine how to protect vulnerable species and their habitats.


2017 ◽  
Vol 108 (3) ◽  
pp. 288-298 ◽  
Author(s):  
María José Sanín ◽  
Patricia Zapata ◽  
Jean-Christophe Pintaud ◽  
Gloria Galeano ◽  
Adriana Bohórquez ◽  
...  

2017 ◽  
Author(s):  
Alex Mesoudi

AbstractHow do migration and acculturation (i.e. psychological or behavioral change resulting from migration) affect within- and between-group cultural variation? Here I answer this question by drawing analogies between genetic and cultural evolution. Population genetic models show that migration rapidly breaks down between-group genetic structure. In cultural evolution, however, migrants or their descendants can acculturate to local behaviors via social learning processes such as conformity, potentially preventing migration from eliminating between-group cultural variation. An analysis of the empirical literature on migration suggests that acculturation is common, with second and subsequent migrant generations shifting, sometimes substantially, towards the cultural values of the adopted society. Yet there is little understanding of the individual-level dynamics that underlie these population-level shifts. To explore this formally, I present models quantifying the effect of migration and acculturation on between-group cultural variation, for both neutral and costly cooperative traits. In the models, between-group cultural variation, measured using F statistics, is eliminated by migration and maintained by conformist acculturation. The extent of acculturation is determined by the strength of conformist bias and the number of demonstrators from whom individuals learn. Acculturation is countered by assortation, the tendency for individuals to preferentially interact with culturally-similar others. Unlike neutral traits, cooperative traits can additionally be maintained by payoff-biased social learning, but only in the presence of strong sanctioning institutions. Overall, the models show that surprisingly little conformist acculturation is required to maintain realistic amounts of between-group cultural diversity. While these models provide insight into the potential dynamics of acculturation and migration in cultural evolution, they also highlight the need for more empirical research into the individual-level learning biases that underlie migrant acculturation.


2007 ◽  
Vol 26 (2) ◽  
pp. 120-137
Author(s):  
A. J. Reinecke ◽  
S. A. Reinecke ◽  
M. S. Maboeta ◽  
J. P. Odendaal ◽  
R. Snyman

Soil is an important but complex natural resource which is increasingly used as sink for chemicals. The monitoring of soil quality and the assessment of risks posed by contaminants have become crucial. This study deals with the potential use of biomarkers in the monitoring of soils and the assessment of risk resulting from contamination. Apart from an overview of the existing literature on biomarkers, the results of various of our field experiments in South African soils are discussed. Biomarkers may have potential in the assessment of risk because they can indicate at an early stage that exposure has taken place and that a toxic response has been initiated. It is therefore expected that early biomarkers will play an increasing role as diagnostic tools for determining exposure to chemicals and the resulting effects. They may have predictive value that can assist in the prevention or minimising of risks. The aim of this study was to investigate the possibilities of using our results on biomarker responses of soil dwelling organisms to predict changes at higher organisational levels (which may have ecological implications). Our recent experimental results on the evaluation of various biomarkers in both the laboratory and the field are interpreted and placed in perspective within the broader framework of response biology. The aim was further to contribute to the development and application of biomarkers in regulatory risk assessment schemes of soils. This critical review of our own and recent literature on biomarkers in ecotoxicology leads to the conclusion that biomarkers can, under certain conditions, be useful tools in risk assessment. Clear relationships between contamination loads in soil organisms and certain biomarker responses were determined in woodlice, earthworms and terrestrial snails. Clear correlations were also established in field experiments between biomarker responses and changes at the population level. This indicated that, in spite of the fact that direct mechanistic links are still not clarified, biomarkers may have the potential to provide early indications of forthcoming changes at higher organisational levels. Ways are proposed in which biomarkers could be used in the future in risk assessment schemes of soils and future research directions are suggested. 


1982 ◽  
Vol 22 (117) ◽  
pp. 293 ◽  
Author(s):  
HVA Bushby

Populations of two Rhizobium strains (NGR8 and CB81) in the rhizosphere of Leucaena leucocephala were estimated in field experiments with varying levels of antibiotically marked strains as seed inoculation treatments. The population level varied with soil type and strain of Rhizobium. Multiplication in the rhizosphere was very slow in a prairie soil but was more rapid in a sandy podzolic soil and nodulation was three weeks earlier in the sandy soil than in the prairie soil. Survival of these two strains in soil stored in the laboratory also suggested that they (especially NGR8) were not well suited to the prairie soil. Nodule representation of strain CB81 on the prairie soil decreased from 100% three months after sowing to between 12% and 16% two years after sowing. The results suggest that on this soil indigenous rhizobia form effective nitrogen fixing associations with Leucaena leucocephala and that any improvement in nitrogen fixation will require strains of Rhizobium that are more effective than the indigenous strains and better competitors for nodule formation.


1978 ◽  
Vol 26 (1) ◽  
pp. 175 ◽  
Author(s):  
GF Watson ◽  
MJ Littlejohn

A small area of overlap with hybridization characterizes the interaction between northern L. ewingi and L. paraewingi. Although significant levels of postmating isolation exist between the taxa, no evidence of reproductive character displacement in mating-call structure is apparent within the contact zone. No obvious environmental features appear to correlate with the position of the zone. Northern L. ewingi and L. verreauxi alpina also form a hybrid zone where their ranges meet, and the position of the zone appears to be correlated with altitude. The taxa are characterized by a high level of genetic compatibility and no mating-call differentiation is evident. However, despite hybridization with adjacent taxa, the distinctness of northern L. ewingi is maintained away from the areas of interaction, and hence it is considered specifically distinct from L. paraewingi and L. v. alpina. No natural interaction between northern L. ewingi and L. ewingi has been located. However, they are considered to be conspecific because of: their morphological resemblance; the high level of genetic compatibility between them; and, the similarity of each of their interactions with L. paraewingi and with L. v. alpina.


2018 ◽  
Vol 373 (1743) ◽  
pp. 20170059 ◽  
Author(s):  
Michelle Ann Kline ◽  
Rubeena Shamsudheen ◽  
Tanya Broesch

Culture is a human universal, yet it is a source of variation in human psychology, behaviour and development. Developmental researchers are now expanding the geographical scope of research to include populations beyond relatively wealthy Western communities. However, culture and context still play a secondary role in the theoretical grounding of developmental psychology research, far too often. In this paper, we highlight four false assumptions that are common in psychology, and that detract from the quality of both standard and cross-cultural research in development. These assumptions are: (i) the universality assumption , that empirical uniformity is evidence for universality, while any variation is evidence for culturally derived variation; (ii) the Western centrality assumption , that Western populations represent a normal and/or healthy standard against which development in all societies can be compared; (iii) the deficit assumption , that population-level differences in developmental timing or outcomes are necessarily due to something lacking among non-Western populations; and (iv) the equivalency assumption , that using identical research methods will necessarily produce equivalent and externally valid data, across disparate cultural contexts. For each assumption, we draw on cultural evolutionary theory to critique and replace the assumption with a theoretically grounded approach to culture in development. We support these suggestions with positive examples drawn from research in development. Finally, we conclude with a call for researchers to take reasonable steps towards more fully incorporating culture and context into studies of development, by expanding their participant pools in strategic ways. This will lead to a more inclusive and therefore more accurate description of human development. This article is part of the theme issue ‘Bridging cultural gaps: interdisciplinary studies in human cultural evolution’.


2020 ◽  
Vol 29 (19) ◽  
pp. 3649-3666
Author(s):  
Lisa Cooper ◽  
Lynsey Bunnefeld ◽  
Jack Hearn ◽  
James M. Cook ◽  
Konrad Lohse ◽  
...  

Author(s):  
Yu-Wei Hsiao ◽  
Hui-Yun Tseng ◽  
Hung Ngoc Nguyen ◽  
Si-Min Lin

Abstract Correct discrimination between courtship signals could help to maintain genetic integrity between closely related species. However, asymmetric usage of signals might cause asymmetric gene flow across the contact zone. Buergeria choui and B. otai are sibling-species with a parapatric distribution pattern in Taiwan, having two narrow contact zones on the east and west sides of the island. Combining behavioural experiments with genome-wide RAD-seq analyses, we test whether the ability of signal recognition influences genetic introgression across their species boundary. The playback experiments show that all B. choui populations respond strongest to their own ‘cricket’ trills, while the western population of B. otai have evolved a strong level of reproductive character displacement by showing the inclusive usage of the unique ‘chicken’ signals. In contrast, the eastern B. otai population uses both ‘chicken’ and ‘cricket’ trills, and has a stronger preference for the latter. The weak reproductive character displacement in the eastern population has led to asymmetry genetic introgression from B. choui toward B. otai. Our results support the prediction that a more specialized signal-user, compared to its sibling, generalized signal-user, might have a higher probability of maintaining their genetic integrity in the secondary contact region.


2019 ◽  
Vol 5 (8) ◽  
pp. eaaw0609 ◽  
Author(s):  
Marco Smolla ◽  
Erol Akçay

Cultural evolution relies on the social transmission of cultural traits along a population’s social network. Research indicates that network structure affects information spread and thus the capacity for cumulative culture. However, how network structure itself is driven by population-culture co-evolution remains largely unclear. We use a simple model to investigate how populations negotiate the trade-off between acquiring new skills and getting better at existing skills and how this trade-off shapes social networks. We find unexpected eco-evolutionary feedbacks from culture onto social networks and vice versa. We show that selecting for skill generalists results in sparse networks with diverse skill sets, whereas selecting for skill specialists results in dense networks and a population that specializes on the same few skills on which everyone is an expert. Our model advances our understanding of the complex feedbacks in cultural evolution and demonstrates how individual-level behavior can lead to the emergence of population-level structure.


Sign in / Sign up

Export Citation Format

Share Document