scholarly journals Selective extinction against redundant species buffers functional diversity

2020 ◽  
Vol 287 (1931) ◽  
pp. 20201162
Author(s):  
Catalina Pimiento ◽  
Christine D. Bacon ◽  
Daniele Silvestro ◽  
Austin Hendy ◽  
Carlos Jaramillo ◽  
...  

The extinction of species can destabilize ecological processes. A way to assess the ecological consequences of species loss is by examining changes in functional diversity. The preservation of functional diversity depends on the range of ecological roles performed by species, or functional richness, and the number of species per role, or functional redundancy. However, current knowledge is based on short timescales and an understanding of how functional diversity responds to long-term biodiversity dynamics has been limited by the availability of deep-time, trait-based data. Here, we compile an exceptional trait dataset of fossil molluscs from a 23-million-year interval in the Caribbean Sea (34 011 records, 4422 species) and develop a novel Bayesian model of multi-trait-dependent diversification to reconstruct mollusc (i) diversity dynamics, (ii) changes in functional diversity, and (iii) extinction selectivity over the last 23 Myr. Our results identify high diversification between 23–5 Mya, leading to increases in both functional richness and redundancy. Conversely, over the last three million years, a period of high extinction rates resulted in the loss of 49% of species but only 3% of functional richness. Extinction rates were significantly higher in small, functionally redundant species suggesting that competition mediated the response of species to environmental change. Taken together, our results identify long-term diversification and selective extinction against redundant species that allowed functional diversity to grow over time, ultimately buffering the ecological functions of biological communities against extinction.

2015 ◽  
Vol 282 (1808) ◽  
pp. 20150186 ◽  
Author(s):  
Kjetil L. Voje ◽  
Øistein H. Holen ◽  
Lee Hsiang Liow ◽  
Nils Chr. Stenseth

A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution.


Science ◽  
2019 ◽  
Vol 365 (6458) ◽  
pp. 1114-1119 ◽  
Author(s):  
Carsten Rahbek ◽  
Michael K. Borregaard ◽  
Alexandre Antonelli ◽  
Robert K. Colwell ◽  
Ben G. Holt ◽  
...  

Mountain regions are unusually biodiverse, with rich aggregations of small-ranged species that form centers of endemism. Mountains play an array of roles for Earth’s biodiversity and affect neighboring lowlands through biotic interchange, changes in regional climate, and nutrient runoff. The high biodiversity of certain mountains reflects the interplay of multiple evolutionary mechanisms: enhanced speciation rates with distinct opportunities for coexistence and persistence of lineages, shaped by long-term climatic changes interacting with topographically dynamic landscapes. High diversity in most tropical mountains is tightly linked to bedrock geology—notably, areas comprising mafic and ultramafic lithologies, rock types rich in magnesium and poor in phosphate that present special requirements for plant physiology. Mountain biodiversity bears the signature of deep-time evolutionary and ecological processes, a history well worth preserving.


2016 ◽  
Vol 64 (spe2) ◽  
pp. 81-96 ◽  
Author(s):  
Angelo Fraga Bernardino ◽  
Paulo Roberto Pagliosa ◽  
Ronaldo Adriano Christofoletti ◽  
Francisco Barros ◽  
Sergio A. Netto ◽  
...  

Abstract Estuaries are unique coastal ecosystems that sustain and provide essential ecological services for mankind. Estuarine ecosystems include a variety of habitats with their own sediment-fauna dynamics, all of them globally undergoing alteration or threatened by human activities. Mangrove forests, saltmarshes, tidal flats and other confined estuarine systems are under increasing stress due to human activities leading to habitat and species loss. Combined changes in estuarine hydromorphology and in climate pose severe threats to estuarine ecosystems on a global scale. The ReBentos network is the first integrated attempt in Brazil to monitor estuarine changes in the long term to detect and assess the effects of global warming. This paper is an initial effort of ReBentos to review current knowledge on benthic estuarine ecology in Brazil. We herein present and synthesize all published work on Brazilian estuaries that has focused on the description of benthic communities and related ecological processes. We then use current data on Brazilian estuaries and present recommendations for future studies to address climate change effects, suggesting trends for possible future research and stressing the need for long-term datasets and international partnerships.


Author(s):  
Amalia Keck Al-Habahbeh ◽  
Susanne Kortsch ◽  
Bodil A. Bluhm ◽  
Frank Beuchel ◽  
Bjørn Gulliksen ◽  
...  

Climate warming influences structure and function of Arctic benthic ecosystems. Assessing the response of these systems to perturbations requires long-term studies addressing key ecological processes related to recolonization and succession of species. Based on unique time-series (1980–2017), this study addresses successional patterns of hard-bottom benthos in two fjords in NW Svalbard after a pulse perturbation in 1980 and during a period of rapid climate warming. Analysis of seafloor photographs revealed different return rates of taxa, and variability in species densities, through time. It took 13 and 24 years for the community compositions of cleared and control transects to converge in the two fjords. Nearly two decades after the study initiation, an increase in filamentous and foliose macroalgae was observed with a subsequent reorganization in the invertebrate community. Trait analyses showed a decrease in body size and longevity of taxa in response to the pulse perturbation and a shift towards small/medium size and intermediate longevity following the macroalgae takeover. The observed slow recovery rates and abrupt shifts in community structure document the vulnerability of Arctic coastal ecosystems to perturbations and continued effects of climate warming. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.


2021 ◽  
Vol 19 (3) ◽  
Author(s):  
Carla Patrícia de Souza ◽  
Carlos Alberto de Sousa Rodrigues-Filho ◽  
Francisco Antônio Rodrigues Barbosa ◽  
Rafael Pereira Leitão

Abstract Biological invasions are leading several species to extinction and are projected as a main driver of biodiversity changes in lakes for this century. However, the knowledge of their impacts on the Neotropical ichthyofauna over time remains largely incipient, especially when considering the functional diversity of native communities. Here we aim to identify the effects of non-native species, especially the non-native piscivorous Cichla kelberi and Pygocentrus nattereri, on the functional diversity of the native ichthyofauna of the Carioca Lake, Middle Rio Doce basin, state of Minas Gerais. Using fish occurrence data for eight years from 1983 to 2010 combined with an ecomorphological-trait analysis, we found that while the native species richness dropped to 56%, the functional richness is only 27% of that found before introductions. In other words, more than species, the ichthyofauna suffered an impressive decline in the range of functional traits, which can further have severe impacts on ecological processes within that system. When considering all the components of the current ichthyofauna (native and non-native species), neither taxonomic nor functional richness have changed over time. However, even keeping biodiversity levels, non-native species are not able to fully compensate for the extinct native ones in terms of functions.


2020 ◽  
Author(s):  
Mark K. L. Wong ◽  
Carlos P. Carmona

ABSTRACTFunctional diversity assessments are crucial and increasingly used for understanding ecological processes and managing ecosystems. The functional diversity of a community is assessed by sampling traits at one or more scales (individuals, populations, species) and calculating a summary index of the variation in trait values. However, it remains unclear how the scale at which traits are sampled and the indices used to estimate functional diversity may alter the patterns observed and inferences about ecological processes.For 40 plant and 61 ant communities, we assess functional diversity using six methods – encompassing various mean-based and probabilistic methods – chosen to reflect common scenarios where different levels of detail are available in trait data. We test whether including trait variability at different scales (from individuals to species) alter functional diversity values calculated using volume-based and dissimilarity-based indices, Functional Richness (FRic) and Rao, respectively. We further test whether such effects alter the functional diversity patterns observed across communities and their relationships with environmental drivers such as abiotic gradients and occurrences of invasive species.Intraspecific trait variability strongly determined FRic and Rao. Methods using only species’ mean trait values to calculate FRic (convex hulls) and Rao (Gower-based dissimilarity) distorted the patterns observed when intraspecific trait variability was considered. These distortions generated Type I and Type II errors for the effects of environmental factors structuring the plant and ant communities.The high sensitivity of FRic to individuals with extreme trait values was revealed in comparisons of different probabilistic methods including among-individual and among-population trait variability in functional diversity. By contrast, values and ecological patterns in Rao were consistent among methods including different scales of intraspecific trait variability.Decisions about where traits are sampled and how trait variability is included in functional diversity can drastically change the patterns observed and conclusions about ecological processes. We recommend sampling the traits of multiple individuals per species and capturing their intraspecific trait variability using probabilistic methods. We discuss how intraspecific trait variability can be reasonably estimated and included in functional diversity in the common circumstance where only limited trait data are available.


Paleobiology ◽  
2000 ◽  
Vol 26 (4) ◽  
pp. 578-605 ◽  
Author(s):  
Mike Foote

Changes in genus diversity within higher taxa of marine animals on the temporal scale of a few million years are more strongly correlated with changes in extinction rate than with changes in origination rate during the Paleozoic. After the Paleozoic the relative roles of origination and extinction in diversity dynamics are reversed. Metazoa as well as individual higher taxa shift from one mode of diversity dynamics to the other. The magnitude of taxonomic rates, the relative variance of origination and extinction rates, and the presence or absence of a long-term secular increase in diversity all fail to account for the shift in importance of origination and extinction in diversity changes. Origination and extinction rates both tend to be diversity-dependent, but different modes of diversity-dependence may contribute to the change in diversity dynamics from the Paleozoic to the post-Paleozoic. During the Paleozoic, there is a weak tendency for extinction rates to be more diversity-dependent than origination rates, whereas after the Paleozoic the two rates are about equally diversity-dependent on average.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


2021 ◽  
pp. jnnp-2020-324005
Author(s):  
Klaus Fassbender ◽  
Fatma Merzou ◽  
Martin Lesmeister ◽  
Silke Walter ◽  
Iris Quasar Grunwald ◽  
...  

Since its first introduction in clinical practice in 2008, the concept of mobile stroke unit enabling prehospital stroke treatment has rapidly expanded worldwide. This review summarises current knowledge in this young field of stroke research, discussing topics such as benefits in reduction of delay before treatment, vascular imaging-based triage of patients with large-vessel occlusion in the field, differential blood pressure management or prehospital antagonisation of anticoagulants. However, before mobile stroke units can become routine, several questions remain to be answered. Current research, therefore, focuses on safety, long-term medical benefit, best setting and cost-efficiency as crucial determinants for the sustainability of this novel strategy of acute stroke management.


2021 ◽  
Vol 22 (3) ◽  
pp. 1201
Author(s):  
Hsuan Peng ◽  
Kazuhiro Shindo ◽  
Renée R. Donahue ◽  
Ahmed Abdel-Latif

Stem cell-based cardiac therapies have been extensively studied in recent years. However, the efficacy of cell delivery, engraftment, and differentiation post-transplant remain continuous challenges and represent opportunities to further refine our current strategies. Despite limited long-term cardiac retention, stem cell treatment leads to sustained cardiac benefit following myocardial infarction (MI). This review summarizes the current knowledge on stem cell based cardiac immunomodulation by highlighting the cellular and molecular mechanisms of different immune responses to mesenchymal stem cells (MSCs) and their secretory factors. This review also addresses the clinical evidence in the field.


Sign in / Sign up

Export Citation Format

Share Document