scholarly journals Famine-related mortality in early life and accelerated life histories in nineteenth-century Belgium

2020 ◽  
Vol 287 (1938) ◽  
pp. 20201182
Author(s):  
Katharina E. Pink ◽  
Robert J. Quinlan ◽  
Saskia Hin

Density-dependent and extrinsic mortality are predicted to accelerate reproductive maturation. The first 5 years of life is a proposed sensitive period for life-history regulation. This study examines the ways in which local mortality during this sensitive period was related to subsequent marriage timing in nineteenth-century Belgium ( n women = 11 892; n men = 14 140). Local mortality during the sensitive period was inversely associated with age at first marriage for men and women controlling for literacy, occupational status, population growth and migration. Cox regression indicated decreased time to marriage for women (HR = 1.661, 95% CI: 1.542–1.789) and men (HR = 1.327, 95% CI: 1.238–1.422) from high mortality municipalities. Rising population growth rates were associated with earlier marriage for men and women. Migration in general was associated with later marriage for men and women. Consistent with life-history predictions, harsh ecological conditions during early life such as famine coincided with earlier marriage.

2018 ◽  
Vol 69 (6) ◽  
pp. 942 ◽  
Author(s):  
Daisuke Goto ◽  
Martin J. Hamel ◽  
Mark A. Pegg ◽  
Jeremy J. Hammen ◽  
Matthew L. Rugg ◽  
...  

Environmental regimes set the timing and location of early life-history events of migratory species with synchronised reproduction. However, modified habitats in human-dominated landscapes may amplify uncertainty in predicting recruitment pulses, impeding efforts to restore habitats invaluable to endemic species. The present study assessed how environmental and spawner influences modulate recruitment variability and persistence of the Missouri River shovelnose sturgeon (Scaphirhynchus platorynchus) under modified seasonal spawning and nursery habitat conditions. Using a spatially explicit individual-based biophysical model, spawning cycle, early life-history processes (dispersal, energetics and survival) and prey production were simulated under incrementally perturbed flow (from –10 to –30%) and temperature (+1 and +2°C) regimes over 50 years. Simulated flow reduction and warming synergistically contracted spring spawning habitats (by up to 51%) and periods (by 19%). Under these conditions, fewer mature females entered a reproductive cycle, and more females skipped spawning, reducing spawning biomass by 20–50%. Many spawners migrated further to avoid increasingly unfavourable habitats, intensifying local density dependence in larval stages and, in turn, increasing size-dependent predation mortality. Diminished egg production (by 20–97%) and weakened recruitment pulses (by 46–95%) ultimately reduced population size by 21–74%. These simulations illustrate that environmentally amplified maternal influences on early life histories can lower sturgeon population stability and resilience to ever-increasing perturbations.


2016 ◽  
Vol 283 (1841) ◽  
pp. 20161760 ◽  
Author(s):  
Mathieu Douhard ◽  
Leif Egil Loe ◽  
Audun Stien ◽  
Christophe Bonenfant ◽  
R. Justin Irvine ◽  
...  

The internal predictive adaptive response (internal PAR) hypothesis predicts that individuals born in poor conditions should start to reproduce earlier if they are likely to have reduced performance in later life. However, whether this is the case remains unexplored in wild populations. Here, we use longitudinal data from a long-term study of Svalbard reindeer to examine age-related changes in adult female life-history responses to environmental conditions experienced in utero as indexed by rain-on-snow (ROS utero ). We show that females experiencing high ROS utero had reduced reproductive success only from 7 years of age, independent of early reproduction. These individuals were able to maintain the same annual reproductive success between 2 and 6 years as phenotypically superior conspecifics that experienced low ROS utero . Young females born after high ROS utero engage in reproductive events at lower body mass (about 2.5 kg less) than those born after low ROS utero . The mean fitness of females that experienced poor environmental conditions in early life was comparable with that of females exposed to good environmental conditions in early life. These results are consistent with the idea of internal PAR and suggest that the life-history responses to early-life conditions can buffer the delayed effects of weather on population dynamics.


2020 ◽  
Author(s):  
Chris Jolly ◽  
Brenton von Takach ◽  
Jonathan Webb

Abstract Global wildlife trade is a multibillion-dollar industry and a significant driver of vertebrate extinction risk. Yet, few studies have quantified the impact of wild harvesting for the illicit pet trade on populations. Long-lived species, by virtue of their slow life history characteristics, may be unable to sustain even low levels of harvesting. Here, we assessed the impact of illegal poaching on a metapopulation of endangered broad-headed snakes (Hoplocephalus bungaroides) at gated (protected) and ungated (unprotected) populations. Because broad-headed snakes are long-lived, grow slowly and reproduce infrequently, populations are likely vulnerable to increases in adult mortality. Long-term data revealed that annual survival rates of snakes were significantly lower in the ungated population than the gated population, consistent with the hypothesis of human removal of snakes for the pet trade. Population viability analysis showed that the ungated population has a strongly negative population growth rate and is only prevented from ultimate extinction by dispersal of small numbers of individuals from the gated population. Sensitivity analyses showed that the removal of a small number of adult females was sufficient to impose negative population growth and suggests that threatened species with slow life histories are likely to be especially vulnerable to illegal poaching.


2015 ◽  
Vol 370 (1673) ◽  
pp. 20140234 ◽  
Author(s):  
Hanna Kokko ◽  
Michael E. Hochberg

Studies of body size evolution, and life-history theory in general, are conducted without taking into account cancer as a factor that can end an organism's reproductive lifespan. This reflects a tacit assumption that predation, parasitism and starvation are of overriding importance in the wild. We argue here that even if deaths directly attributable to cancer are a rarity in studies of natural populations, it remains incorrect to infer that cancer has not been of importance in shaping observed life histories. We present first steps towards a cancer-aware life-history theory, by quantifying the decrease in the length of the expected reproductively active lifespan that follows from an attempt to grow larger than conspecific competitors. If all else is equal, a larger organism is more likely to develop cancer, but, importantly, many factors are unlikely to be equal. Variations in extrinsic mortality as well as in the pace of life—larger organisms are often near the slow end of the fast–slow life-history continuum—can make realized cancer incidences more equal across species than what would be observed in the absence of adaptive responses to cancer risk (alleviating the so-called Peto's paradox). We also discuss reasons why patterns across species can differ from within-species predictions. Even if natural selection diminishes cancer susceptibility differences between species, within-species differences can remain. In many sexually dimorphic cases, we predict males to be more cancer-prone than females, forming an understudied component of sexual conflict.


2021 ◽  
Author(s):  
◽  
Conor Stewart Bruce Neilson

<p>A primary goal of ecology is to identify the factors underlying recruitment variability, and how they may shape population dynamics. Recruitment is driven by the input of new individuals into a population. However, these individuals often show high diversity in phenotypic traits and life histories, and the consequences of this variation are poorly understood. Phenotypic variation is widespread among the early life stages of fish, and this variation may be influenced by events occurring across multiple life stages. While many studies have investigated phenotypic variation and its effect on population dynamics, comparatively few studies use an integrated approach that evaluates patterns and processes across multiple life history stages. Here I focus on a native amphidromous fish, Galaxias maculatus, and I explore patterns and consequences of phenotypic variation during larval stages, migratory stages, and post-settlement stages of this fish.  I explore variability in phenotypes and early life history traits of G. maculatus through both space and time. I use metrics derived from body size and otolith-based demographic reconstructions to quantify potentially important early life history traits. I found that cohorts of juvenile fish sampled later in the year were comprised of individuals that were older, smaller, and grew more slowly relative to fish sampled earlier in the year. I also found that two sampled sites (the Hutt River and the Wainuiomata River) showed different temporal trends, despite their close geographical proximity.  I then investigated whether phenotype was related to mortality. I used otolith-based traits to characterise larval ‘quality’ for individual fish. I then calculated the average larval quality for discrete cohorts of fish, and used catch-curve analysis to estimate mortality rates for these cohorts. I investigated the overall relationship between quality and mortality, and compared the trend between two sites. My results indicate that phenotype and mortality were not significantly correlated. However, this inference may be limited by low statistical power; the non-significant trends suggest that the relationship might be negative (i.e., larvae of higher quality tend to have lower rates of mortality). This trend is typical of systems where population expansion is limited by food rather than predators.  I then investigated whether phenotypic traits in the juvenile cohorts were correlated with traits in adult cohorts. I resampled the focal populations ~6 months after sampling the juvenile stages (i.e., targeting fish from sampled cohorts that had survived to adulthood), and I used data from otoliths to reconstruct life history traits (hatch dates and growth histories). I compared adult life history traits to the traits of discrete juvenile cohorts.  My results suggest that fish that survived to adulthood had comparatively slower growth rates (reconstructed for a period of larval/juvenile growth) relative to the sampled juvenile cohorts (where growth rate was estimated for the same period in their life history). I also found that the distributions of hatch dates varied between sites. Fish that survived to adulthood at one site hatched later in the breeding season, while adult stages from the other site had hatch dates that were distributed across the entire breeding season. Both hatch date and growth rate are likely linked to fitness, and their interaction may have influenced patterns of survival to adulthood. These results provide evidence for carry-over effects of larval phenotype on juvenile success  Collectively my thesis emphasises the importance of phenotype and life history variability in studies of recruitment. It also highlights the importance of spatial scale, and how biological patterns may differ between geographically close systems. Some of the general inferences from my study may extend to other migratory Galaxiid species, and perhaps more generally, to many species with extensive larval dispersal. Finally, my work highlights potentially important interactions between phenotypes, life histories, and mortality, which can ultimately shape recruitment, and the dynamics of populations.</p>


Author(s):  
Gui-You Yang ◽  
Li-Hua Huang ◽  
Katrina L. Schmid ◽  
Chen-Guang Li ◽  
Jing-Yi Chen ◽  
...  

This study aimed to explore the association between screen exposure in early life and preschool myopia. During the baseline survey of the Longhua Child Cohort Study (LCCS), data of 29,595 preschoolers were collected via a caregiver-reported questionnaire regarding children’s socio-demographic characteristics, visual status, screen exposure and relevant parental information. Data of 26,433 preschoolers with normal eyesight or myopia were included in the analysis and cox regression modelling was employed to assess the associations. Results suggested the hypothesis that screen exposure in early life could be significantly and positively associated with preschool myopia, and in agreement with this hypothesis was the association being strengthened with the increasing daily exposure duration and total years of exposure; in the stratification analysis based on the presence of parental myopia, these associations still existed, and the strength of associations was stronger in preschoolers with myopic parents than those without. Moreover, a statistically significant association was only observed between initial screen exposure that occurred during 0–1-years old and myopia for preschoolers without myopic parents, while the significant associations were observed between initial screen exposure that occurred during 0–1, 1–2, 2–3, and after 3 years old and myopia for preschoolers who had myopic parents, with the strongest association found in the group of children initially exposed to electronic screens during 0–1 year old. Thus our findings indicated the hypothesis that screen exposure in early life might be associated with the occurrence of preschool myopia, and that the postnatal first year might be the sensitive period for the association. However, it is premature to conclude that early screen time leads to myopia with current data. Further longitudinal studies performed with cycloplegia are necessary to verify the hypothesis and shed light on the more urgent question whether early screen exposure contributes to the later myopia epidemic of school-aged children.


2018 ◽  
Author(s):  
Jacques A. Deere ◽  
Ilona van den Berg ◽  
Gregory Roth ◽  
Isabel M. Smallegange

AbstractDispersal is an important form of movement influencing population dynamics, species distribution, and gene flow between populations. In population models, dispersal is often included in a simplified manner by removing a random proportion of the population. Many ecologists now argue that models should be formulated at the level of individuals instead of the population-level. To fully understand the effects of dispersal on natural systems, it is therefore necessary to incorporate individual-level differences in dispersal behaviour in population models. Here we parameterised an integral projection model (IPM), which allows for studying how individual life histories determine population-level processes, using bulb mites, Rhizoglyphus robini, to assess to what extent dispersal expression (frequency of individuals in the dispersal stage) and dispersal probability affect the proportion of dispersers and natal population growth rate. We find that allowing for life-history differences between resident phenotypes and disperser phenotypes shows that multiple combinations of dispersal probability and dispersal expression can produce the same proportion of leaving individuals. Additionally, a given proportion of dispersing individuals results in different natal population growth rates. The results highlight that dispersal life histories, and the frequency with which disperser phenotypes occur in the natal population, significantly affect population-level processes. Thus, biological realism of dispersal population models can be increased by incorporating the typically observed life history differences between resident phenotypes and disperser phenotypes, and we here present a methodology to do so.


2021 ◽  
Author(s):  
◽  
Conor Stewart Bruce Neilson

<p>A primary goal of ecology is to identify the factors underlying recruitment variability, and how they may shape population dynamics. Recruitment is driven by the input of new individuals into a population. However, these individuals often show high diversity in phenotypic traits and life histories, and the consequences of this variation are poorly understood. Phenotypic variation is widespread among the early life stages of fish, and this variation may be influenced by events occurring across multiple life stages. While many studies have investigated phenotypic variation and its effect on population dynamics, comparatively few studies use an integrated approach that evaluates patterns and processes across multiple life history stages. Here I focus on a native amphidromous fish, Galaxias maculatus, and I explore patterns and consequences of phenotypic variation during larval stages, migratory stages, and post-settlement stages of this fish.  I explore variability in phenotypes and early life history traits of G. maculatus through both space and time. I use metrics derived from body size and otolith-based demographic reconstructions to quantify potentially important early life history traits. I found that cohorts of juvenile fish sampled later in the year were comprised of individuals that were older, smaller, and grew more slowly relative to fish sampled earlier in the year. I also found that two sampled sites (the Hutt River and the Wainuiomata River) showed different temporal trends, despite their close geographical proximity.  I then investigated whether phenotype was related to mortality. I used otolith-based traits to characterise larval ‘quality’ for individual fish. I then calculated the average larval quality for discrete cohorts of fish, and used catch-curve analysis to estimate mortality rates for these cohorts. I investigated the overall relationship between quality and mortality, and compared the trend between two sites. My results indicate that phenotype and mortality were not significantly correlated. However, this inference may be limited by low statistical power; the non-significant trends suggest that the relationship might be negative (i.e., larvae of higher quality tend to have lower rates of mortality). This trend is typical of systems where population expansion is limited by food rather than predators.  I then investigated whether phenotypic traits in the juvenile cohorts were correlated with traits in adult cohorts. I resampled the focal populations ~6 months after sampling the juvenile stages (i.e., targeting fish from sampled cohorts that had survived to adulthood), and I used data from otoliths to reconstruct life history traits (hatch dates and growth histories). I compared adult life history traits to the traits of discrete juvenile cohorts.  My results suggest that fish that survived to adulthood had comparatively slower growth rates (reconstructed for a period of larval/juvenile growth) relative to the sampled juvenile cohorts (where growth rate was estimated for the same period in their life history). I also found that the distributions of hatch dates varied between sites. Fish that survived to adulthood at one site hatched later in the breeding season, while adult stages from the other site had hatch dates that were distributed across the entire breeding season. Both hatch date and growth rate are likely linked to fitness, and their interaction may have influenced patterns of survival to adulthood. These results provide evidence for carry-over effects of larval phenotype on juvenile success  Collectively my thesis emphasises the importance of phenotype and life history variability in studies of recruitment. It also highlights the importance of spatial scale, and how biological patterns may differ between geographically close systems. Some of the general inferences from my study may extend to other migratory Galaxiid species, and perhaps more generally, to many species with extensive larval dispersal. Finally, my work highlights potentially important interactions between phenotypes, life histories, and mortality, which can ultimately shape recruitment, and the dynamics of populations.</p>


2012 ◽  
Vol 69 (12) ◽  
pp. 2112-2129 ◽  
Author(s):  
Miriam J. Doyle ◽  
Kathryn L. Mier

For Gulf of Alaska (GOA) fish populations, ordination by principal component analysis of a matrix of species by early life history and ecological traits resulted in distribution of species along three primary gradients. These are synonymous with phenology of egg and larval production, quantity of production, and ubiquity of larvae, the latter representing temporal and spatial extent of distribution in the pelagic environment. GOA species were assigned to categories that shared similar positions in ordination space relative to the three primary gradients. From this comparative analysis, a conceptual framework is proposed for species’ early life histories representing trade-offs in adaptation to prevailing environmental conditions and associated vulnerability and resilience factors that may modulate species’ recruitment responses to environmental variability. The utility of this framework for evaluating response to environmental forcing was supported by the analysis of a 27-year time series of GOA late spring larval fish abundance. The hypothesis for this ongoing research is that we can utilize similarities in reproductive and early life history characteristics among species to identify (i) ecologically determined species groups that are predisposed to respond to environmental forcing in similar ways and (ii) plausible environmental predictors of recruitment variation attributable to aspects of early life history.


Sign in / Sign up

Export Citation Format

Share Document