Does leaving water make fish smarter? Terrestrial exposure and exercise improve spatial learning in an amphibious fish

2021 ◽  
Vol 288 (1953) ◽  
pp. 20210603
Author(s):  
Giulia S. Rossi ◽  
Patricia A. Wright

Amphibious fishes transition between aquatic and terrestrial habitats, and must therefore learn to navigate two dramatically different environments. We used the amphibious killifish Kryptolebias marmoratus to test the hypothesis that the spatial learning ability of amphibious fishes would be altered by exposure to terrestrial environments because of neural plasticity in the brain region linked to spatial cognition (dorsolateral pallium). We subjected fish to eight weeks of fluctuating air–water conditions or terrestrial exercise before assessing spatial learning using a bifurcating T-maze, and neurogenesis in the dorsolateral pallium by immunostaining for proliferating cell nuclear antigen. In support of our hypothesis, we found that air–water fluctuations and terrestrial exercise improved some markers of spatial learning. Moreover, air–water and exercised fish had 39% and 46% more proliferating cells in their dorsolateral pallium relative to control fish, respectively. Overall, our findings suggest that fish with more terrestrial tendencies may have a cognitive advantage over those that remain in water, which ultimately may influence their fitness in both aquatic and terrestrial settings. More broadly, understanding the factors that promote neural and behavioural plasticity in extant amphibious fishes may provide insights into how ancestral fishes successfully colonized novel terrestrial environments before giving rise to land-dwelling tetrapods.

2007 ◽  
Vol 107 (2) ◽  
pp. 392-397 ◽  
Author(s):  
Asim Mahmood ◽  
Dunyue Lu ◽  
Changsheng Qu ◽  
Anton Goussev ◽  
Zheng Gang Zhang ◽  
...  

Object This study was designed to investigate the neuroprotective properties of recombinant erythropoietin (EPO) and carbamylated erythropoietin (CEPO) administered following traumatic brain injury (TBI) in rats. Methods Sixty adult male Wistar rats were injured with controlled cortical impact, and then EPO, CEPO, or a placebo (phosphate-buffered saline) was injected intraperitoneally. These injections were performed either 6 or 24 hours after TBI. To label newly regenerating cells, bromodeoxyuridine was injected intraperitoneally for 14 days after TBI. Blood samples were obtained on Days 1, 2, 3, 7, 14, and 35 to measure hematocrit. Spatial learning was tested using the Morris water maze. All rats were killed 35 days after TBI. Brain sections were immunostained as well as processed for the enzyme-linked immunosorbent assay to measure brain-derived neurotrophic factor (BDNF). Results A statistically significant improvement in spatial learning was seen in rats treated with either EPO or CEPO 6 or 24 hours after TBI (p < 0.05); there was no difference in the effects of EPO and CEPO. Also, these drugs were equally effective in increasing the number of newly proliferating cells within the dentate gyrus at both time points. A statistically significant increase in BDNF expression was seen in animals treated with both EPO derivatives at 6 or 24 hours after TBI. Systemic hematocrit was significantly increased at 48 hours and 1 and 2 weeks after treatment with EPO but not with CEPO. Conclusions These data demonstrate that at the doses used, EPO and CEPO are equally effective in enhancing spatial learning and promoting neural plasticity after TBI.


Author(s):  
А. Г. Гунин ◽  
Н. Н. Голубцова ◽  
Н. К. Корнилова

Целью работы стало исследование содержания белка теплового шока 90 ( HSP 90) в фибробластах дермы человека от эмбрионального развития и до глубокой старости (от 20 нед беременности до 85 лет), а также определение значения HSP 90 для возрастных изменений численности фибробластов в дерме человека. HSP 90, ядерный антиген пролиферирующих клеток ( PCNA ) выявляли в срезах кожи непрямым иммуногистохимическим методом. Результаты показали, что в коже человека от 20 нед беременности до 20 лет доля фибробластов дермы с положительной окраской на HSP 90 остается постоянной. С 21 года до 60 лет наблюдают планомерное уменьшение доли фибробластов дермы, имеющих положительную окраску на HSP 90. У людей 61-85 лет происходит резкое увеличение доли фибробластов дермы с положительной окраской на HSP 90. Возрастные изменения содержания HSP 90 положительных фибробластов в дерме статистически не связаны с возрастным уменьшением общего количества и доли PCNA -положительных фибробластов в дерме. The aim of this work was to examine the content of heat shock protein 90 ( HSP 90) in fibroblasts of human dermis from the development until deep aging (from 20 weeks of pregnancy until 85 years old), and defining of a role of HSP 90 in age-dependent changes in the number of fibroblasts in the dermis. HSP 90, proliferating cells nuclear antigen ( PCNA ) were detected with indirect immunohistochemical technique. Results showed that a portion of fibroblasts with positive staining for HSP 90 in the dermis is not changed from 20 weeks of development to 20 years old. Percent of HSP 90 positive fibroblasts in dermis is decreased from 21 to 60 years old. From 61 year, the number of HSP 90 positive fibroblasts in dermis is increased. Age-related changes in the number of HSP 90 positive fibroblasts is not statistically associated with an age-related decrease in a total number and percent of PCNA positive fibroblasts the dermis.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123863 ◽  
Author(s):  
Johannes Mayer ◽  
Gesine Reichart ◽  
Tursonjan Tokay ◽  
Falko Lange ◽  
Simone Baltrusch ◽  
...  

2010 ◽  
Vol 298 (6) ◽  
pp. R1615-R1626 ◽  
Author(s):  
Neil I. Bower ◽  
Ian A. Johnston

The mRNA expression of myogenic regulatory factors, including myoD1 (myoblast determination factor) gene paralogs, and their regulation by amino acids and insulin-like growth factors were investigated in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon ( Salmo salar). The cell cycle and S phase were determined as 28.1 and 13.3 h, respectively, at 18°C. Expression of myoD1b and myoD1c peaked at 8 days of culture in the initial proliferation phase and then declined more than sixfold as cells differentiated and was correlated with PCNA (proliferating cell nuclear antigen) expression ( R = 0.88, P < 0.0001; R = 0.70, P < 0.0001). In contrast, myoD1a transcripts increased from 2 to 8 days and remained at elevated levels as myotubes were formed. mRNA levels of myoD1c were, on average, 3.1- and 5.7-fold higher than myoD1a and myoD1b, respectively. Depriving cells of amino acids and serum led to a rapid increase in pax7 and a decrease in myoD1c and PCNA expression, indicating a transition to a quiescent state. In contrast, amino acid replacement in starved cells produced significant increases in myoD1c (at 6 h), PCNA (at 12 h), and myoD1b (at 24 h) and decreases in pax7 expression as cells entered the cell cycle. Our results are consistent with temporally distinct patterns of myoD1c and myoD1b expression at the G1 and S/G2 phases of the cell cycle. Treatment of starved cells with insulin-like growth factor I or II did not alter expression of the myoD paralogs. It was concluded that, in vitro, amino acids alone are sufficient to stimulate expression of genes regulating myogenesis in myoblasts involving autocrine/paracrine pathways. The differential responses of myoD paralogs during myotube maturation and amino acid treatments suggest that myoD1b and myoD1c are primarily expressed in proliferating cells and myoD1a in differentiating cells, providing evidence for their subfunctionalization following whole genome and local duplications in the Atlantic salmon lineage.


1992 ◽  
Vol 102 (1) ◽  
pp. 71-78 ◽  
Author(s):  
SANDRA CITTERIO ◽  
SERGIO SGORBATI ◽  
MARISA LEVI ◽  
BRUNO MARIA COLOMBO ◽  
ELIO SPARVOLI

The identification of cell proliferation markers has been shown to be a useful tool with which to study basic mechanisms of cell cycle progression. The use of immunofluorescence techniques revealed the presence of the proliferating cell nuclear antigen (PCNA) in pea tissue, where we observed a high PCNA expression in proliferating cells of the root meristem compared to noncycling cells of the differentiated leaf. The presence of PCNA was monitored also during the time-course of seed germination, before, during and after the cell cycle resumption of the embryo cells. PCNA is present in embryo cells not only during and after resumption of the cell cycle but also before, when cells have not yet begun replicating their genome. A bivariate flow cytometric analysis of DNA and nuclear protein content was used to localize precisely the cells of the examined pea tissues in different cell cycle phase subcompartments. A high correlation was found between the degree of cell proliferation and the protein content of G1 nuclei, on the one hand, and the percentage of PCNA positive cells on the other.


2012 ◽  
Vol 50 (No. 12) ◽  
pp. 531-536 ◽  
Author(s):  
K. Wasowicz ◽  
M. Gajecka ◽  
J. Calka ◽  
E. Jakimiuk ◽  
M. Gajecki

Zearalenone (ZEA), a micotoxin produced by Fusarium sp. is regarded as a phytoestrogen. Although cytotoxic and genotoxic activity of ZEA was detected, the majority of its toxic influence is related to the ability of binding to estrogen receptors and disrupting the endocrine regulation of the reproductory functions in females. It was previously found that ZEA inhibits proliferation of cells in porcine ovaries, as detected with immunostaining for proliferating cells nuclear antigen (PCNA). The number of PCNA-positive cells was inversely proportional to the dose of ZEA. We decided to answer the question of whether ZEA induces apoptosis in porcine ovaries. Experimental gilts (before first estrus) were fed ZEA in a dosage of 20 (group II) or 40 (group III) &micro;g/kg of body weight/day for 63 days. Control animals (group I) were fed a placebo. After that period animals were sacrificed, ovaries were extirpated, fixed in paraformaldehyde solution, cut into sections with a cryostat and studied for apoptosis with TUNEL kit, and for the presence of apoptosis-promoting protein Bax with immunohistochemistry. It was found that apoptosis was detected with TUNEL only in medium-sized antral ovarian follicles in animals of groups I and II. No apoptosis signal was found in the ovaries of animals in group III. No differences in the distribution and intensity of staining for Bax were found between animals of all investigated groups. The results indicate that ZEA do not induce apoptosis in porcine ovaries, and the inhibition of proliferation must be associated with other mechanisms.


Sign in / Sign up

Export Citation Format

Share Document