scholarly journals Contributions of environmental and maternal transmission to the assembly of leaf fungal endophyte communities

2021 ◽  
Vol 288 (1956) ◽  
pp. 20210621
Author(s):  
Lukas P. Bell-Dereske ◽  
Sarah E. Evans

Leaf fungal endophytes (LFEs) contribute to plant growth and responses to stress. Fungi colonize leaves through maternal transmission, e.g. via the seed, and through environmental transmission, e.g. via aerial dispersal. The relative importance of these two pathways in assembly and function of the LFE community is poorly understood. We used amplicon sequencing to track switchgrass ( Panicum virgatum ) LFEs in a greenhouse and field experiment as communities assembled from seed endophytes and rain fungi (integration of wet and dry aerial dispersal) in germinating seeds, seedlings, and adult plants. Rain fungi varied temporally and hosted a greater portion of switchgrass LFE richness (greater than 65%) than were found in seed endophytes (greater than 25%). Exposure of germinating seeds to rain inoculum increased dissimilarity between LFE communities and seed endophytes, increasing the abundance of rain-derived taxa, but did not change diversity. In the field, seedling LFE composition changed more over time, with a decline in seed-derived taxa and an increase in richness, in response to environmental transmission than LFEs of adult plants. We show that environmental transmission is an important driver of LFE assembly, and likely plant growth, but its influence depends on both the conditions at the time of colonization and plant life stage.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 140 ◽  
Author(s):  
Ahmed Mohamed Aly Khalil ◽  
Saad El-Din Hassan ◽  
Sultan M. Alsharif ◽  
Ahmed M. Eid ◽  
Emad El-Din Ewais ◽  
...  

Endophytic fungi are widely present in internal plant tissues and provide different benefits to their host. Medicinal plants have unexplored diversity of functional fungal association; therefore, this study aimed to isolate endophytic fungi associated with leaves of medicinal plants Ephedra pachyclada and evaluate their plant growth-promoting properties. Fifteen isolated fungal endophytes belonging to Ascomycota, with three different genera, Penicillium, Alternaria, and Aspergillus, were obtained from healthy leaves of E. pachyclada. These fungal endophytes have varied antimicrobial activity against human pathogenic microbes and produce ammonia and indole acetic acid (IAA), in addition to their enzymatic activity. The results showed that Penicillium commune EP-5 had a maximum IAA productivity of 192.1 ± 4.04 µg mL−1 in the presence of 5 µg mL−1 tryptophan. The fungal isolates of Penicillium crustosum EP-2, Penicillium chrysogenum EP-3, and Aspergillus flavus EP-14 exhibited variable efficiency for solubilizing phosphate salts. Five representative fungal endophytes of Penicillium crustosum EP-2, Penicillium commune EP-5, Penicillium caseifulvum EP-11, Alternaria tenuissima EP-13, and Aspergillus flavus EP-14 and their consortium were selected and applied as bioinoculant to maize plants. The results showed that Penicillium commune EP-5 increased root lengths from 15.8 ± 0.8 to 22.1 ± 0.6. Moreover, the vegetative growth features of inoculated maize plants improved more than the uninoculated ones.


2012 ◽  
Vol 5 (5) ◽  
pp. 521-529 ◽  
Author(s):  
N.M. Kleczewski ◽  
J.T. Bauer ◽  
J.D. Bever ◽  
K. Clay ◽  
H.L. Reynolds

2021 ◽  
Vol 12 ◽  
Author(s):  
Mulla S. Ayesha ◽  
Trichur S. Suryanarayanan ◽  
Karaba N. Nataraja ◽  
Siddegowda Rajendra Prasad ◽  
Ramanan Uma Shaanker

Pre-sowing seed treatment with systemic fungicides is a firmly entrenched practice for most agricultural crops worldwide. The treatment is intended to protect the crop against seed- and soil-borne diseases. In recent years, there is increasing evidence that fungicidal applications to manage diseases might inadvertently also affect non-target organisms, such as endophytes. Endophytes are ubiquitously present in plants and contribute to plant growth and development besides offering resistance to biotic and abiotic stresses. In seeds, endophytes may play a role in seed development, seed germination, seedling establishment and crop performance. In this paper, we review the recent literature on non-target effects of fungicidal applications on endophytic fungal community and discuss the possible consequences of indiscriminate seed treatment with systemic fungicide on seed endophytes. It is now well recognized that endophytes are ubiquitously present in all parts of the plant, including the seeds. They may be transmitted vertically from seed to seed as in many grasses and/or acquired horizontally from the soil and the environment. Though the origins and evolution of these organisms in plants are a matter of conjecture, numerous studies have shown that they symbiotically aid in plant growth and development, in nutrient acquisition as well in protecting the plants from abiotic and biotic stresses. Against this background, it is reasonable to assume that the use of systemic fungicides in seed treatment may not only affect the seed endophytes but also their attendant benefits to seedling growth and establishment. While there is evidence to indicate that fungicidal applications to manage plant diseases also affect foliar endophytes, there are only few studies that have documented the effect of seed treatment on seed-borne endophytes. Some of the convincing examples of the latter come from studies on the effect of fungicide application on rye grass seed endophyte AR37. More recently, experiments have shown that removal of seed endophytes by treatment with systemic fungicides leads to significant loss of seedling vigour and that such losses could be partially restored by enriching the seedlings with the lost endophytes. Put together, these studies reinforce the importance of seed endophytes to seedling growth and establishment and draw attention on how to trade the balance between the benefits of seed treatments and the direct and indirect costs incurred due to loss of endophytes. Among several approaches, use of reduced-risk fungicides and identifying fungicide-resistant endophytes are suggested to sustain the endophyte contribution to early seedling growth.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Julian Rodriguez-Algaba ◽  
Chris K. Sørensen ◽  
Rodrigo Labouriau ◽  
Annemarie F. Justesen ◽  
Mogens S. Hovmøller

Environmental factors influence the disease susceptibility of crop plants. In this study, we established an experimental system to investigate the effects of vernalisation, temperature and plant growth stage on the susceptibility of winter wheat and winter triticale to Puccinia striiformis, the causal agent of yellow (stripe) rust. Two temperature regimes: standard (18 °C day/12 °C night) and low (12 °C day/6 °C night), vernalised and non-vernalised seedlings, vernalised adult plants and two pathogen races were investigated. At low temperatures, vernalisation reduced the susceptibility of seedlings exposed to the ‘Warrior’ race, while this was only the case for five out of eight varieties exposed to the ‘Kranich’ race. Changing from standard to low temperature resulted in increased susceptibility of non-vernalised seedlings of seven varieties inoculated with the ‘Warrior’ race and five varieties inoculated with the ‘Kranich’ race. Increased susceptibility at low temperature was also detected for several varieties at the adult plant growth stage. Comparisons between vernalised seedlings and adult plants revealed an effect of plant growth stage on disease susceptibility (e.g., Adult Plant Resistance) in five varieties at standard temperature for the ‘Warrior’ race and in five and four varieties at standard and low temperature respectively, for the ‘Kranich’ race. The complex and unpredictable interactions between environment and pathogen influencing yellow rust susceptibility of individual varieties stress the importance of phenotyping for disease resistance under different environmental conditions and pathogen populations. The environmental impact on rust susceptibility should also be taken into account in early-warning systems targeting wheat and triticale breeding programmes and growers.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0212577 ◽  
Author(s):  
Rubén Martinez ◽  
Marilyn N. Vera-Chang ◽  
Majd Haddad ◽  
Jessica Zon ◽  
Laia Navarro-Martin ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 877
Author(s):  
Mustafa Morsy ◽  
Blake Cleckler ◽  
Hayden Armuelles-Millican

In a search for efficient fungal endophytes that can promote crop production and/or increase crop tolerance to abiotic stress, we isolated and tested various species harbored by wild plants. Sixty-seven endophytic fungal isolates were obtained from drought stressed, poor soil habitats, and inland high salt areas. We extensively tested the roles of Ampelomyces sp. and Penicillium sp. isolates in improving tomato growth and yield. Under greenhouse and field trails, Ampelomyces sp. and Penicillium sp. endophytes proved effective in conferring positive benefits to tomatoes placed under stress as well as under normal growing conditions. Ampelomyces sp. conferred tolerance to tomatoes placed under drought stress in addition to enhancing overall plant growth and fruit yield in comparison to non-symbiotic plants under drought stress. Penicillium sp. conferred tolerance to tomatoes placed under 300 mM salinity stress in addition to enhancing root biomass in comparison to non-symbiotic plants. Both endophytes proved efficient in enhancing plant growth, stress tolerance, recovery, and fruit yield under optimal experimental conditions in comparison to non-symbiotic plants. Field testing of tomato yield showed increased yield of symbiotic tomatoes compared to non-symbiotic ones. This data suggests that both Ampelomyces sp. and Penicillium sp. share a promising potential for improving future agricultural production, particularly with the projected changes in climate in the future.


Botany ◽  
2015 ◽  
Vol 93 (4) ◽  
pp. 233-241 ◽  
Author(s):  
James S. Santangelo ◽  
Nash E. Turley ◽  
Marc T.J. Johnson

Plant – fungal endophyte interactions are common in nature and they can shape the ecology of plants. Vertically transmitted endophytes are hypothesized to serve as mutualists, protecting plants from herbivores. If this hypothesis is true, then we expect endophytes to be most abundant in the presence of herbivores and least abundant in their absence, assuming endophytes incur a cost to their host. We tested this prediction by studying the effects of intense rabbit (Oryctolagus cuniculus Linnaeus) grazing on grass–endophyte interactions at Silwood Park, UK. We examined seeds of red fescue (Festuca rubra L.) collected from 15 natural populations that were protected from rabbits for 0.3–21 years. Contrary to our prediction, the mean proportion of seeds with endophytes increased 1.84×, from 0.45 to 0.83, following 21 years of rabbit exclusion. To better understand the mechanisms driving this increase in frequency, we conducted a fully factorial greenhouse experiment where we manipulated the presence or absence of endophyte infection, intraspecific competition, and simulated grazing on F. rubra plants. In both damaged and undamaged treatments, infected plants produced approximately twice as much biomass as uninfected plants, and endophytes did not influence tolerance to herbivory. These results suggest that endophytes directly change plant growth but not compensatory responses to damage. In the absence of competitors, infected plants produced 2.17× more biomass than uninfected plants, whereas in the presence of competitors, infected plants produced only 1.55× more biomass than uninfected plants. This difference suggests that intraspecific competition might lessen the benefits of endophyte infection. Our results do not support the defensive mutualism hypothesis, but instead suggest that endophyte-induced plant growth is important in shaping the costs and benefits of endophytes in our system.


Botany ◽  
2012 ◽  
Vol 90 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Michelle Hubbard ◽  
James Germida ◽  
Vladimir Vujanovic

Seed germination is a critical life stage for plants survival and timely seedling establishment especially in stressful environments. We hypothesized that fungal endophytes would improve wheat seed germination under heat and drought stress. The hydrothermal time (HTT) model of germination is a conceptual model useful for predicting the timing and energy of germination (EG) under a given set of conditions. The HTT and EG are applied, for the first time, to determine if one or more compatible endophytic fungi enhance heat or drought tolerance in wheat. Fungal endophytes tested dramatically increased the percent of germination, improved EG and HTT values, and diminished wheat susceptibility to heat and drought as measured by fresh weight of seedlings. When colonized by the most effective fungal endophyte, the values of the parameters tested in wheat seeds exposed to heat stress resembled those of unstressed seeds.


Sign in / Sign up

Export Citation Format

Share Document