A discussion on advanced methods of energy conversion- Magnetohydrodynamic power generation - Temperature and velocity modulated m .h .d . systems

A study is made of the means by which plasmas used for generating m.h.d. power may be modulated in order to provide higher power densities. Temperature and/or velocity modulation may be obtained in a quasi-steady flow combustion system, e.g. by introducing striations of high temperature fluid, or in a non-steady system by exciting pulsations or oscillations. Studies on striations are outlined and the relevant work on non-steady modulation is discussed. A description is given of the joint work at Sheffield University on an oscillatory vortex m.h.d.generator (Sheffield) and a proposed linear m.h.d. system (Queen Mary College, London).

2003 ◽  
Vol 764 ◽  
Author(s):  
C.-M. Zetterling ◽  
S.-M. Koo ◽  
E. Danielsson ◽  
W. Liu ◽  
S.-K. Lee ◽  
...  

AbstractSilicon carbide has been proposed as an excellent material for high-frequency, high-power and high-temperature electronics. High power and high frequency applications have been pursued for quite some time in SiC with a great deal of success in terms of demonstrated devices. However, self-heating problems due to the much higher power densities that result when ten times higher electrical fields are used inside the devices needs to be addressed. High-temperature electronics has not yet experienced as much attention and success, possibly because there is no immediate market. This paper will review some of the advances that have been made in high-temperature electronics using silicon carbide, starting from process technology, continuing with device design, and finishing with circuit examples. For process technology, one of the biggest obstacles is long-term stable contacts. Several device structures have been electrically characterized at high temperature (BJTs and FETs) and will be compared to surface temperature measurements and physical device simulation. Finally some proposed circuit topologies as well as novel solutions will be presented.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seungjun Choo ◽  
Faizan Ejaz ◽  
Hyejin Ju ◽  
Fredrick Kim ◽  
Jungsoo Lee ◽  
...  

AbstractThermoelectric power generation offers a promising way to recover waste heat. The geometrical design of thermoelectric legs in modules is important to ensure sustainable power generation but cannot be easily achieved by traditional fabrication processes. Herein, we propose the design of cellular thermoelectric architectures for efficient and durable power generation, realized by the extrusion-based 3D printing process of Cu2Se thermoelectric materials. We design the optimum aspect ratio of a cuboid thermoelectric leg to maximize the power output and extend this design to the mechanically stiff cellular architectures of hollow hexagonal column- and honeycomb-based thermoelectric legs. Moreover, we develop organic binder-free Cu2Se-based 3D-printing inks with desirable viscoelasticity, tailored with an additive of inorganic Se82− polyanion, fabricating the designed topologies. The computational simulation and experimental measurement demonstrate the superior power output and mechanical stiffness of the proposed cellular thermoelectric architectures to other designs, unveiling the importance of topological designs of thermoelectric legs toward higher power and longer durability.


2017 ◽  
Vol 46 (18) ◽  
pp. 5872-5879 ◽  
Author(s):  
Mandvi Saxena ◽  
Tanmoy Maiti

Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency.


Author(s):  
Mustafa Bulut Coskun ◽  
Mahmut Faruk Aksit

With the race for higher power and efficiency new gas turbines operate at ever increasing pressures and temperatures. Increased compression ratios and firing temperatures require many engine parts to survive extended service hours under large pressure loads and thermal distortions while sustaining relative vibratory motion. On the other hand, wear at elevated temperatures limits part life. Combined with rapid oxidation for most materials wear resistance reduces rapidly with increasing temperature. In order to achieve improved wear performance at elevated temperatures better understanding of combined wear and oxidation behavior of high temperature super alloys and coatings needed. In an attempt to aid designers for high temperature applications, this work provides a quick reference for the high temperature friction and wear research available in open literature. High temperature friction and wear data have been collected, grouped and summarized in tables.


2015 ◽  
Vol 193 (3) ◽  
pp. 17-23 ◽  
Author(s):  
Fumihiko Komatsu ◽  
Manabu Tanaka ◽  
Tomoyuki Murakami ◽  
Yoshihiro Okuno

2006 ◽  
Vol 129 (4) ◽  
pp. 713-718 ◽  
Author(s):  
Hiroaki Hatanaka ◽  
Nobukazu Ido ◽  
Takuya Ito ◽  
Ryota Uemichi ◽  
Minoru Tagami ◽  
...  

Boiler piping of fossil-fuel combustion power generation plants are exposed to high-temperature and high-pressure environments, and failure of high-energy piping due to creep damage has been a concern. Therefore, a precise creep damage assessment method is needed. This paper proposes a nondestructive method for creep damage detection of piping in fossil-fuel combustion power generation plants by ultrasonic testing. Ultrasonic signals are transformed to signals in a frequency domain by Fourier transform, and a specific frequency band is chosen. To determine the creep damage, the spectrum intensities are calculated. Calculated intensities have a good correlation to life consumption of the weld joints, and this method is able to predict the remaining life of high-temperature piping, which has been already installed.


Sign in / Sign up

Export Citation Format

Share Document