A Discussion on natural strain and geological structure - The energy balance and deformation mechanisms of thrust sheets

The total energy involved in emplacing a thrust sheet is expended in initiation and growth of the thrust surface, slip along this surface, and deformation within the main mass of the sheet. This total energy can be determined from potential energy considerations knowing the initial and final geometry from balanced cross sections after defining the thrust’s thermodynamic system boundaries. Emplacement of the McConnell thrust in the Canadian Rockies involved ca. 1019 J of gravitational work, an order of magnitude greater than any possible work by longitudinal compressive surface forces. A new theory for the initiation and growth of thrusts as ductile fractures is based on a demonstration that thrust displacement is linearly related to thrust map length and that fold complexes at the ends of thrusts are constant in size for a given metamorphic grade. Much of the total work is dissipated within the body of the sheet. Field observations show which mechanisms of dissipation are most important at various positions within the thrust sheet, and it is found that only the top 5 km of the McConnell was dominated by frictional sliding. A novel type of sliding along discrete surfaces is pressure solution slip, in which obstacles are by-passed by diffusive mass transfer. Fibres and pressure solution grooves are diagnostic features of this sliding law, in which slip velocity is linearly related to shear stress. Pressure solution slip is widespread at depths greater than about 5 km, but at this depth penetrative whole rock deformation by pressure solution becomes dominant - marked by cleavage and stretching directions - and accounts for much of the finite strain within the thrust sheet. The McConnell thrust has an outer layer which deformed by frictional sliding and this overlies a massive linearly viscous core responsible for much of the energy dissipation and gross mechanical behaviour.

Author(s):  
Mohd Akhmal Bin Muhamad Sidek ◽  
Umar Hamzah

The tectonic evolution of thrust fold belt and thrust sheet zone in Northwest Sabah basin was described based on balanced reconstruction of seismic sections representing Mid-Miocene to Recent deposits. The study area is located at the center of a wide crustal deformational zone bordered by the Sunda Shelf on the northeast, Sulu Sea in the southwest and the South China Sea in the northwest. Balancing cross section can be applied after the deformed geological structure geometry is accurately determined from seismic sections and 7 seismic stratigraphic unit from 15 Ma until Recent is consecutively restored. There are four steps involved in retro-deformation processes beginning with removing all faults displacements followed by unfolding the folds, isostasy correction and finally the removal of each compacted layer parts or decomposition. Wider fold wavelengths with least thrust faults were observed from south to north in the seismic sections ranging from 12 to 4 km with an average of about 7 km, while smaller fold wavelengths and more thrust faults were observed in the north based on the same seismic sections. In general, the reconstructed cross sections revealed compressional tectonic deformation activity as shown by shortening strain trending NW-SE. Measurement of total shortening shows that thrust fold belt is imbalance by an exceeds of 14.7 km and more active compared to thrust sheet zone which has only 0.9 km. Results of the study also indicate facies destruction due to shortening which is decreasing towards Pliocene or younger deposits.


Author(s):  
T.B. Ball ◽  
W.M. Hess

It has been demonstrated that cross sections of bundles of hair can be effectively studied using image analysis. These studies can help to elucidate morphological differences of hair from one region of the body to another. The purpose of the present investigation was to use image analysis to determine whether morphological differences could be demonstrated between male and female human Caucasian terminal scalp hair.Hair samples were taken from the back of the head from 18 caucasoid males and 13 caucasoid females (Figs. 1-2). Bundles of 50 hairs were processed for cross-sectional examination and then analyzed using Prism Image Analysis software on a Macintosh llci computer. Twenty morphological parameters of size and shape were evaluated for each hair cross-section. The size parameters evaluated were area, convex area, perimeter, convex perimeter, length, breadth, fiber length, width, equivalent diameter, and inscribed radius. The shape parameters considered were formfactor, roundness, convexity, solidity, compactness, aspect ratio, elongation, curl, and fractal dimension.


2007 ◽  
Vol 589 ◽  
pp. 353-374 ◽  
Author(s):  
P. A. GREGORY ◽  
P. N. JOUBERT ◽  
M. S. CHONG

Using the method pioneered by Gurzhienko (1934), the crossflow separation produced by a body of revolution in a steady turn is examined using a stationary deformed body placed in a wind tunnel. The body of revolution was deformed about a radius equal to three times the body's length. Surface pressure and skin-friction measurements revealed regions of separated flow occurring over the rear of the model. Extensive surface flow visualization showed the presence of separated flow bounded by a separation and reattachment line. This region of separated flow began just beyond the midpoint of the length of the body, which was consistent with the skin-friction data. Extensive turbulence measurements were performed at four cross-sections through the wake including two stations located beyond the length of the model. These measurements revealed the location of the off-body vortex, the levels of turbulent kinetic energy within the shear layer producing the off-body vorticity and the large values of 〈uw〉 stress within the wake. Velocity spectra measurements taken at several points in the wake show evidence of the inertial sublayer. Finally, surface flow topologies and outer-flow topologies are suggested based on the results of the surface flow visualization.


2021 ◽  
Vol 507 (4) ◽  
pp. 5264-5271
Author(s):  
Manel Naouai ◽  
Abdelhak Jrad ◽  
Ayda Badri ◽  
Faouzi Najar

ABSTRACT Rotational inelastic scattering of silyl cyanide (SiH3CN) molecule with helium (He) atoms is investigated. Three-dimensional potential energy surface (3D-PES) for the SiH3CN–He interacting system is carried out. The ab initio 3D-PES is computed using explicitly correlated coupled cluster approach with single, double, and perturbative triple excitation CCSD(T)-F12a connected to augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. A global minimum at (R = 6.35 bohr; θ = 90○; ϕ = 60○) with a well depth of 52.99 cm−1 is pointed out. Inelastic rotational cross-sections are emphasized for the 22 first rotational levels for total energy up to 500 cm−1 via close coupling (CC) approach in the case of A-SiH3CN and for the 24 first rotational levels for total energy up to 100 cm−1 via CC and from 100 to 500 cm−1 via coupled states (CS) in the case of E-SiH3CN. Rate coefficients are derived for temperature until 80 K for both A- and E-SiH3CN–He systems. Propensity rules are obtained for |ΔJ| = 2 processes with broken parity for A-SiH3CN and for |ΔJ| = 2 processes with |ΔK| = 0 and unbroken parity for E-SiH3CN.


2019 ◽  
Vol 10 (2) ◽  
pp. 459-470
Author(s):  
V. A. Kontorovich ◽  
В. V. Lunev ◽  
V. V. Lapkovsky

The article discusses the geological structure, oil‐and‐gas‐bearing capacities and salt tectogenesis of the Anabar‐Khatanga saddle located on the Laptev Sea shore. In the study area, the platform sediments are represented by the 14‐45 km thick Neoproterozoic‐Mesozoic sedimentary complexes. The regional cross‐sections show the early and middle Devonian salt‐bearing strata and associated salt domes in the sedimentary cover, which may be indicative of potential hydrocarbon‐containing structures. Diapirs reaching the ground surface can be associated with structures capable of trapping hydrocarbons, and typical anticline structures can occur above the domes buried beneath the sediments. In our study, we used the algorithms and software packages developed by A.A. Trofimuk Institute of Petroleum Geology and Geophysics (IPGG SB RAS). Taking into account the structural geological features of the study area, we conducted numerical simulation of the formation of salt dome structures. According to the numerical models, contrasting domes that reached the ground surface began to form in the early Permian and developed most intensely in the Mesozoic, and the buried diapirs developed mainly in the late Cretaceous and Cenozoic.


2013 ◽  
Vol 151 (1) ◽  
pp. 100-120 ◽  
Author(s):  
CHUN LI ◽  
DA-YONG JIANG ◽  
LONG CHENG ◽  
XIAO-CHUN WU ◽  
OLIVIER RIEPPEL

AbstractLargocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al. 2011. Largocephalosaurus is characterized primarily by an oval supratemporal fenestra, an elongate dorsal ‘rib-basket’, a narrow and elongate transverse process of the dorsal vertebrae, and the lack of a complete dorsal carapace of osteoderms. The Saurosphargidae is distinct mainly in having a retracted external naris, a jugal–squamosal contact, a large supratemporal extensively contacting the quadrate shaft, a leaf-like tooth crown with convex labial surface and concave lingual surface, a closed dorsal ‘rib-basket’, many dorsal osteoderms, a large boomerang-like or atypical T-shaped interclavicle. Current evidence suggests that the Saurosphargidae is the sister-group of the Sauropterygia and that Largocephalosaurus is the sister-group of the Saurosphargis–Sinosaurosphargis clade within the family.


Zootaxa ◽  
2017 ◽  
Vol 4258 (6) ◽  
pp. 581 ◽  
Author(s):  
FRANCIANE CEDROLA ◽  
ROBERTO JÚNIO PEDROSO DIAS ◽  
ISABEL MARTINELE ◽  
MARTA D’AGOSTO

To date the genus Diploplastron comprised only one species of ophryoscolecid ciliate, Diploplastron affine, which is characterized by having two retractable ciliary zones in the anterior end of the body, two slender and juxtaposed skeletal plates on the right side, a rod shape macronucleus, and two contractile vacuoles. During study on the characterization of rumen ciliate community composition in Brazilian domestic sheep, we observed ciliates with atypical morphology but with diagnostic features of genus Diploplastron. This study describes Diploplastron dehorityi, a new species of ophryoscolecid ciliate, that differs from D. affine, primarily, in the morphology of skeletal plates, morphology of nuclear apparatus and body shape. In addition to the similarities between the new species and congener species, D. dehorityi has some morphological similarities to species of genus Eremoplastron.


Author(s):  
Christopher B. Ruff ◽  
Ryan W. Higgins ◽  
Kristian J. Carlson

Long bone diaphyseal cross-sectional geometries reflect the mechanical properties of the bones, and can be used to aid in inferences of locomotor behavior in extinct hominins. This chapter considers all available long bone diaphyseal and femoral neck cross-sections of specimens from Sterkfontein Member 4, and presents comparisons of these section properties and other cross-sectional dimensions with those of other early hominins as well as modern samples. The cross-sectional geometry of the Sterkfontein Member 4 long bone specimens suggests some similarities to, but also interesting differences in, mechanical loading of these elements relative to modern humans. The less asymmetric cortical bone distribution in the Sterkfontein femoral necks is consistent with other evidence above indicating an altered gait pattern involving lateral displacement of the body center of mass over the stance limb. The relatively very strong upper limb of StW 431 implies that arboreal behavior formed a significant component of its locomotor repertoire. Bipedal gait may have been less efficient and arboreal climbing more prevalent in the Sterkfontein hominins.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
F E Fish ◽  
R Holzman

Synopsis The typical orientation of a neutrally buoyant fish is with the venter down and the head pointed anteriorly with a horizontally oriented body. However, various advanced teleosts will reorient the body vertically for feeding, concealment, or prehension. The shrimpfish (Aeoliscus punctulatus) maintains a vertical orientation with the head pointed downward. This posture is maintained by use of the beating fins as the position of the center of buoyancy nearly corresponds to the center of mass. The shrimpfish swims with dorsum of the body moving anteriorly. The cross-sections of the body have a fusiform design with a rounded leading edge at the dorsum and tapering trailing edge at the venter. The median fins (dorsal, caudal, anal) are positioned along the venter of the body and are beat or used as a passive rudder to effect movement of the body in concert with active movements of pectoral fins. Burst swimming and turning maneuvers by yawing were recorded at 500 frames/s. The maximum burst speed was 2.3 body lengths/s, but when measured with respect to the body orientation, the maximum speed was 14.1 body depths/s. The maximum turning rate by yawing about the longitudinal axis was 957.5 degrees/s. Such swimming performance is in line with fishes with a typical orientation. Modification of the design of the body and position of the fins allows the shrimpfish to effectively swim in the head-down orientation.


1970 ◽  
Vol 25 (5) ◽  
pp. 730-735
Author(s):  
H.-D. Freund ◽  
G. Locke

The absorption and dispersion of sound due to dissipative phenomena such as diffusion, heat conduction and viscous flow have been investigated by Herzfeld, Litovitz and others. Whereas in these studies the total energy of the carrier system remains constant, we consider the case that it is changing. It turnes out that the wavelength X remains constant, while all other wave characteristics become time depend and can be connected with the usual sound velocity of the carrier system ..The change in energy density takes place via the potential energy. Thus the original balance between potential and kinetic energy is disturbed. Modulation vibrations of the wave amplitudes around the time averages arise. In addition dephasing of the pressure and density components with respect to the acoustic velocity takes place. The phasevelocities are disturbed too. They differ from time dependence of c(t).These differences are running asymptotically towards zero, i. e. after a longer period of time a phase step remains of the total wave system. This phase step is negative for increasing energy of the carrier system and positive for decreasing energy. The value of the phase step is proportional to the wavelength λ, i. e. systems of this kind show dispersion.


Sign in / Sign up

Export Citation Format

Share Document