scholarly journals An analytical theory of the buoyancy–Kolmogorov subrange transition in turbulent flows with stable stratification

Author(s):  
Semion Sukoriansky ◽  
Boris Galperin

The buoyancy subrange of stably stratified turbulence is defined as an intermediate range of scales larger than those in the inertial subrange. This subrange encompasses the crossover from internal gravity waves (IGWs) to small-scale turbulence. The energy exchange between the waves and small-scale turbulence is communicated across this subrange. At the same time, it features progressive anisotropization of flow characteristics on increasing spatial scales. Despite many observational and computational studies of the buoyancy subrange, its theoretical understanding has been lagging. This article presents an investigation of the buoyancy subrange using the quasi-normal scale elimination (QNSE) theory of turbulence. This spectral theory uses a recursive procedure of small-scale modes elimination based upon a quasi-normal mapping of the velocity and temperature fields using the Langevin equations. In the limit of weak stable stratification, the theory becomes completely analytical and yields simple expressions for horizontal and vertical eddy viscosities and eddy diffusivities. In addition, the theory provides expressions for various one-dimensional spectra that quantify turbulence anisotropization. The theory reveals how the dispersion relation for IGWs is modified by turbulence, thus alleviating many unique waves' features. Predictions of the QNSE theory for the buoyancy subrange are shown to agree well with various data.

1970 ◽  
Vol 41 (1) ◽  
pp. 141-152 ◽  
Author(s):  
R. W. Stewart ◽  
J. R. Wilson ◽  
R. W. Burling

Derivatives of velocity signals obtained in a turbulent boundary layer are examined for correspondence to the lognormal distribution. It is found that there is rough agreement but that unlikely events at high values are much less common in the observed fields than would be inferred from the lognormal distribution. The actual distributions correspond more to those obtained from a random walk with a limited number of steps, so the difference between these distributions and the lognormal may be related to the fact that the Reynolds number is finite.The third-order structure function is examined, and found to be roughly consistent with the existence of an inertial subrange of a Kolmogoroff equilibrium reacute;gime over a range of scale which is a priori reasonable but which is far less extensive than the $-\frac{5}{3}$ region of the spectrum.


2016 ◽  
Vol 73 (5) ◽  
pp. 2229-2253 ◽  
Author(s):  
Navid C. Constantinou ◽  
Brian F. Farrell ◽  
Petros J. Ioannou

Abstract Jets coexist with planetary-scale waves in the turbulence of planetary atmospheres. The coherent component of these structures arises from cooperative interaction between the coherent structures and the incoherent small-scale turbulence in which they are embedded. It follows that theoretical understanding of the dynamics of jets and planetary-scale waves requires adopting the perspective of statistical state dynamics (SSD), which comprises the dynamics of the interaction between coherent and incoherent components in the turbulent state. In this work, the stochastic structural stability theory (S3T) implementation of SSD for barotropic beta-plane turbulence is used to develop a theory for the jet–wave coexistence regime by separating the coherent motions consisting of the zonal jets together with a selection of large-scale waves from the smaller-scale motions that constitute the incoherent component. It is found that mean flow–turbulence interaction gives rise to jets that coexist with large-scale coherent waves in a synergistic manner. Large-scale waves that would exist only as damped modes in the laminar jet are found to be transformed into exponentially growing waves by interaction with the incoherent small-scale turbulence, which results in a change in the mode structure, allowing the mode to tap the energy of the mean jet. This mechanism of destabilization differs fundamentally and serves to augment the more familiar S3T instabilities in which jets and waves arise from homogeneous turbulence with the energy source exclusively from the incoherent eddy field and provides further insight into the cooperative dynamics of the jet–wave coexistence regime in planetary turbulence.


1992 ◽  
Vol 236 ◽  
pp. 281-318 ◽  
Author(s):  
J. C. H. Fung ◽  
J. C. R. Hunt ◽  
N. A. Malik ◽  
R. J. Perkins

The velocity field of homogeneous isotropic turbulence is simulated by a large number (38–1200) of random Fourier modes varying in space and time over a large number (> 100) of realizations. They are chosen so that the flow field has certain properties, namely (i) it satisfies continuity, (ii) the two-point Eulerian spatial spectra have a known form (e.g. the Kolmogorov inertial subrange), (iii) the time dependence is modelled by dividing the turbulence into large- and small-scales eddies, and by assuming that the large eddies advect the small eddies which also decorrelate as they are advected, (iv) the amplitudes of the large- and small-scale Fourier modes are each statistically independent and each Gaussian. The structure of the velocity field is found to be similar to that computed by direct numerical simulation with the same spectrum, although this simulation underestimates the lengths of tubes of intense vorticity.Some new results and concepts have been obtained using this kinematic simulation: (a) for the inertial subrange (which cannot yet be simulated by other means) the simulation confirms the form of the Eulerian frequency spectrum $\phi^{\rm E}_{11} = C^{\rm E}\epsilon^{\frac{2}{3}}U^{\frac{2}{3}}_0\omega^{-\frac{5}{3}}$, where ε,U0,ω are the rate of energy dissipation per unit mass, large-scale r.m.s. velocity, and frequency. For isotropic Gaussian large-scale turbulence at very high Reynolds number, CE ≈ 0.78, which is close to the computed value of 0.82; (b) for an observer moving with the large eddies the ‘Eulerian—Lagrangian’ spectrum is ϕEL11 = CELεω−2, where CEL ≈ 0.73; (c) for an observer moving with a fluid particle the Lagrangian spectrum ϕL11 = CLεω−2, where CL ≈ 0.8, a value consistent with the atmospheric turbulence measurements by Hanna (1981) and approximately equal to CEL; (d) the mean-square relative displacement of a pair of particles 〈Δ2〉 tends to the Richardson (1926) and Obukhov (1941) form 〈Δ2〉 = GΔεt3, provided that the subrange extends over four decades in energy, and a suitable origin is chosen for the time t. The constant GΔ is computed and is equal to 0.1 (which is close to Tatarski's 1960 estimate of 0.06); (e) difference statistics (i.e. displacement from the initial trajectory) of single particles are also calculated. The exact result that Y2 = GYεt3 with GY = 2πCL is approximately confirmed (although it requires an even larger inertial subrange than that for 〈Δ2〉). It is found that the ratio [Rscr ]G = 2〈Y2〉/〈Δ2〉≈ 100, whereas in previous estimates [Rscr ]G≈ 1, because for much of the time pairs of particles move together around vortical regions and only separate for the proportion of the time (of O(fc)) they spend in straining regions where streamlines diverge. It is estimated that [Rscr ]G ≈ O(fc−3). Thus relative diffusion is both a ‘structural’ (or ‘topological’) process as well as an intermittent inverse cascade process determined by increasing eddy scales as the particles separate; (f) statistics of large-scale turbulence are also computed, including the Lagrangian timescale, the pressure spectra and correlations, and these agree with predictions of Batchelor (1951), Hinzc (1975) and George et al. (1984).


2021 ◽  
Vol 2099 (1) ◽  
pp. 012033
Author(s):  
G V Zasko ◽  
P A Perezhogin ◽  
A V Glazunov ◽  
E V Mortikov ◽  
Y M Nechepurenko

Abstract Large-scale inclined organized structures in stably stratified turbulent shear flows were revealed in the numerical simulation and indirectly confirmed by the field measurements in the stable atmospheric boundary layer. Spatial scales and forms of these structures coincide with those of the optimal disturbances of a simplified linear model. In this paper, we clarify the relation between the organized structures and the optimal disturbances, analyzing a time series of turbulent fields obtained by the RANS model with eddy viscosity/diffusivity and stochastic forcing generating the small-scale turbulence.


2020 ◽  
Vol 38 (4) ◽  
pp. 845-859
Author(s):  
Sam Tuttle ◽  
Betty Lanchester ◽  
Björn Gustavsson ◽  
Daniel Whiter ◽  
Nickolay Ivchenko ◽  
...  

Abstract. Electric fields are a ubiquitous feature of the ionosphere and are intimately linked with aurora through particle precipitation and field-aligned currents. They exhibit order-of-magnitude changes on temporal and spatial scales of seconds and kilometres respectively which are not easy to measure; knowing their true magnitude and temporal variability is important for a theoretical understanding of auroral processes. We present a unique method to estimate ionospheric electric fields in the region close to (kilometre scale) a dynamic auroral arc by solving the continuity equation for the metastable O+(2P) ions, which emit as they move under the influence of electric fields during their 5 s lifetime. The main advantage of this optical method is the increase in temporal resolution over other methods such as ground-based radars. Simultaneous measurements of emission at 732.0 nm (from the O+(2P) ions) and prompt emissions at 673.0 nm (N2) and 777.4 nm (O), all at high spatial (100 m) and temporal (0.05 s) resolution, are used in the solution of the continuity equation, which gives the dynamic changes of the O+ ion population at all heights in a 3D volume close to the magnetic zenith. Perspective effects are taken into account by a new geometric method, which is based on an accurate estimate of the magnetic zenith position. The emissions resulting from the metastable ions are converted to brightness images by projecting them onto the plane of the ground, and the projected images are then compared with the measured images. The flow velocity of the ions is a free parameter in the solution of the continuity equation; the value that minimises the difference between the modelled and observed images is the extracted flow velocity at each time step. We demonstrate the method with an example event during the passage of a brightening arc feature, lasting about 10 s, in which the inferred electric fields vary between 20 and 120 mV m−1. These inferred electric fields are compared with SuperDARN measurements, which have an average value of 30 mV m−1. An excellent agreement is found in the magnitude and direction of the background electric field; an increase in magnitude during the brightening of the arc feature supports theories of small-scale auroral arc formation and electrodynamics.


Author(s):  
Michael Severin ◽  
Oliver Lammel ◽  
Holger Ax ◽  
Rainer Lückerath ◽  
Wolfgang Meier ◽  
...  

A model FLOX® combustor, featuring a single high momentum premixed jet flame, has been investigated using laser diagnostics in an optically accessible combustion chamber at a pressure of 8 bar. The model combustor was designed as a large single eccentric nozzle main burner (Ø 40 mm) together with an adjoining pilot burner and was operated with natural gas. To gain insight into the flame stabilization mechanisms with and without piloting, simultaneous Particle Image Velocimetry (PIV) and OH Laser Induced Fluorescence (LIF) measurements have been performed at numerous two-dimensional sections of the flame. Additional OH-LIF measurements without PIV-particles were analyzed quantitatively resulting in absolute OH concentrations and temperature fields. The flow field looks rather similar for both the unpiloted and the piloted case, featuring a large recirculation zone next to the high momentum jet. However, flame shape and position change drastically. For the unpiloted case, the flame is lifted, widely distributed and isolated flame kernels are found at the flame root in the vicinity of small scale vortices. For the piloted flame, on the other hand, both pilot and main flame are attached to the burner base plate, and flame stabilization seems to take place on much smaller spatial scales with a connected flame front and no isolated flame kernels. The single shot analysis gives rise to the assumption that for the unpiloted case small scale vortices act like the pilot burner flow in the opposed case and constantly impinge and ignite the high momentum jet at its root.


1999 ◽  
Author(s):  
Mayank Tyagi ◽  
Sumanta Acharya

Abstract Large eddy simulations of jets in crossflow are performed to study the effect of energy containing scales present in the freestream on the penetration and spread of the coolant jet. Two specific freestream turbulence conditions are examined, one corresponding to 15% small scale Gaussian turbulence, and the other corresponding to a 15% freestream turbulence that satisfies the Von-Karman spectrum and has its peak energy specified in the small wave number range (large scales). The small-scale freestream turbulence can be viewed to be similar to grid generated turbulence. The large scale freestream turbulence spectrum has energy peak at a small wave number (corresponding to a specified length scale taken to be 4 hole diameters in this study) and has energy in the inertial subrange for large wave numbers. In the present study, the jets are issued through a row of square holes into the main crossflow. The jet to crossflow blowing ratio is 0.5 and the jet Reynolds number is approximately 4,700. Greater jet penetration and jet-mainstream mixing, in both the vertical and lateral directions, are observed for large-scale turbulence. The energy contained in large scales is mostly preserved although the energy carrying scales themselves undergo subsequent breakdown process due to the effect of the jet. In the nearfield of the jet, the large scales play a major role in enhancing the turbulent stresses, and the near wall transport. In the presence of the large scales, the horseshoe vortex is energized, and there is greater crossflow entrainment into the wake region. These large scale effects lead to significantly greater wall friction.


2019 ◽  
Vol 862 ◽  
pp. 552-591 ◽  
Author(s):  
M. Kazakova ◽  
G. L. Richard

We present a new approach to model coastal waves in the shoaling and surf zones. The model can be described as a depth-averaged large-eddy simulation model with a cutoff in the inertial subrange. The large-scale turbulence is explicitly resolved through an extra variable called enstrophy while the small-scale turbulence is modelled with a turbulent-viscosity hypothesis. The equations are derived by averaging the mass, momentum and kinetic energy equations assuming a shallow-water flow, a negligible bottom shear stress and a weakly turbulent flow assumption which is not restrictive in practice. The model is fully nonlinear and has the same dispersive properties as the Green–Naghdi equations. It is validated by numerical tests and by comparison with experimental results of the literature on the propagation of a one-dimensional solitary wave over a mild sloping beach. The wave breaking is characterized by a sudden increase of the enstrophy which allows us to propose a breaking criterion based on the new concept of virtual enstrophy. The model features three empirical parameters. The first one governs the turbulent dissipation and was found to be a constant. The eddy viscosity is determined by a turbulent Reynolds number depending only on the bottom slope. The third parameter defines the breaking criterion and depends only on the wave initial nonlinearity. These dependences give a predictive character to the model which is suitable for further developments.


2009 ◽  
Vol 27 (5) ◽  
pp. 2141-2155 ◽  
Author(s):  
D. C. Fritts ◽  
M. A. Abdu ◽  
B. R. Batista ◽  
I. S. Batista ◽  
P. P. Batista ◽  
...  

Abstract. We provide here an overview of, and a summary of results arising from, an extensive experimental campaign (the Spread F Experiment, or SpreadFEx) performed from September to November 2005, with primary measurements in Brazil. The motivation was to define the potential role of neutral atmosphere dynamics, specifically gravity wave motions propagating upward from the lower atmosphere, in seeding Rayleigh-Taylor instability (RTI) and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12, and the GUVI instrument aboard the TIMED satellite. Initial results of our SpreadFEx analyses are described separately by Fritts et al. (2009). Further analyses of these data provide additional evidence of 1) gravity wave (GW) activity near the mesopause apparently linked to deep convection predominantly to the west of our measurement sites, 2) small-scale GWs largely confined to lower altitudes, 3) larger-scale GWs apparently penetrating to much higher altitudes, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent influences of these perturbations in the lower F-region on the formation of equatorial spread F, RTI, and plasma bubbles extending to much higher altitudes. Other efforts with SpreadFEx data have also yielded 6) the occurrence, locations, and scales of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, 8) 2-D (height-resolved) structures in electron density fluctuations and equatorial spread F at lower altitudes and plasma bubbles above, and 9) the occurrence of substantial tidal perturbations to the large-scale wind and temperature fields extending to bottomside F-layer and higher altitudes. Collectively, our various SpreadFEx analyses suggest direct links between deep tropical convection and large GW perturbations at large spatial scales at the bottomside F-layer and their likely contributions to the excitation of RTI and plasma bubbles extending to much higher altitudes.


2007 ◽  
Vol 158 (8) ◽  
pp. 235-242 ◽  
Author(s):  
Hans Rudolf Heinimann

The term «precision forestry» was first introduced and discussed at a conference in 2001. The aims of this paper are to explore the scientific roots of the precision concept, define «precision forestry», and sketch the challenges that the implementation of this new concept may present to practitioners, educators, and researchers. The term «precision» does not mean accuracy on a small scale, but instead refers to the concurrent coordination and control of processes at spatial scales between 1 m and 100 km. Precision strives for an automatic control of processes. Precision land use differs from precision engineering by the requirements of gathering,storing and managing spatio-temporal variability of site and vegetation parameters. Practitioners will be facing the challenge of designing holistic, standardized business processes that are valid for whole networks of firms,and that follow available standards (e.g., SCOR, WoodX). There is a need to educate and train forestry professionals in the areas of business process re-engineering, computer supported management of business transactions,methods of remote sensing, sensor technology and control theory. Researchers will face the challenge of integrating plant physiology, soil physics and production sciences and solving the supply chain coordination problem (SCCP).


Sign in / Sign up

Export Citation Format

Share Document