scholarly journals Controllable fabrication of ultrathin free-standing graphene films

Author(s):  
Jianyi Chen ◽  
Yunlong Guo ◽  
Liping Huang ◽  
Yunzhou Xue ◽  
Dechao Geng ◽  
...  

Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing graphene films (UFGFs). Here, we present a modified filtration assembly method to prepare these ultrathin films. With this approach, we have fabricated a series of ultrathin free-standing graphene oxide films and UFGFs, up to 40 mm in diameter, with controllable thickness from micrometre to nanoscale (approx. 40 nm) dimensions. This method can be easily scaled up and the films display excellent optical, electrical and electrochemical properties. The ability to produce UFGFs from graphene oxide with a scalable, low-cost approach should take us a step closer to real-world applications of graphene.

BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 7001-7014
Author(s):  
Zhili Zhang ◽  
Fengfeng Li ◽  
Xingxiang Ji ◽  
Jiachuan Chen ◽  
Guihua Yang ◽  
...  

A green and facile fabrication strategy for synthesis of lignosulfonate-graphene porous hydrogel (LGPH) was designed via incorporation of lignosulfonate (LS) into graphene oxide (GO). This process was achieved by a simple self-assembly method at low temperature, with LS serving as surface functionalization agent. Benefiting from the abundant functional groups of LS and the large surface areas of graphene oxide, the prepared LGPH hydrogel displayed 3D interconnected pores and exhibited an excellent adsorption capacity for Cr(VI) (601.2 mg/g) ions dissolved in water. Importantly, the free-standing LGPH was easily separated from water after the adsorption process, and the adsorption capacities of Cr(VI) onto LGPH maintained 439.1 mg/g after 5 adsorption-desorption cycles. The cost-effectiveness and environmental friendliness of LGPH make it a promising material for removing heavy metals from wastewater.


2017 ◽  
Vol 5 (5) ◽  
pp. 2132-2142 ◽  
Author(s):  
Liviu Cosmin Cotet ◽  
Klára Magyari ◽  
Milica Todea ◽  
Mircea Cristian Dudescu ◽  
Virginia Danciu ◽  
...  

The study reports a low cost and scalable pathway for preparing free-standing GO membranes by a self-assembly process under ambient conditions at an air–liquid interface of an isopycnic sorted GO water–ethanol fraction.


RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 30084-30091 ◽  
Author(s):  
Jinxing Wang ◽  
Hui Wang

Free-standing reduced graphene oxide membranes (rGOMs) with different thicknesses and carbon contents are prepared via a simple, low cost, scalable, and eco-friendly two-step process.


2019 ◽  
Vol 23 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Xiangjun Peng ◽  
Xianyun Xu ◽  
Fujiang Huang ◽  
Qian Liu ◽  
Liangxian Liu

Since Geim and co-workers reported their groundbreaking experiments on graphene, research on graphene oxide (GO) and its derivatives has greatly influenced the field of modern physics, chemistry, device fabrication, material science, and nanotechnology. The unique structure and fascinating properties of these carbon materials can be ascribed to their eminent chemical, electronic, electrochemical, optical, and mechanical properties of GO and its derivatives, particularly compared to other carbon allotropes. The present Review aims to provide an overview on the recent developments in the preparation of GO and its derivatives and their applications in organic reactions. We will first outline the synthesis of GO and its derivatives. Then, we will discuss the major sections about their application as stoichiometric and catalytic oxidants in organic reactions, a particular emphasis on the carbon-carbon, carbon-oxygen, and carbon-nitrogen single bond-forming reactions, as well as carbon-oxygen and carbon-nitrogen double bond-forming reactions. Simultaneously, this Review also describes briefly transition metal supported on GO or its derivatives as a catalyst for organic reaction. Lastly, we will present an outlook of potential areas where GO and its derivatives may be expected to find utility or opportunity for further growth and study.


2020 ◽  
Vol 59 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Yao Wang ◽  
Jianqing Feng ◽  
Lihua Jin ◽  
Chengshan Li

AbstractWe have grown Cu2O films by different routes including self-oxidation and metal-organic deposition (MOD). The reduction efficiency of Cu2O films on graphene oxide (GO) synthesized by modified Hummer’s method has been studied. Surface morphology and chemical state of as-prepared Cu2O film and GO sheets reduced at different conditions have also been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). Results show that self-oxidation Cu2O film is more effective on phtocatalytic reduction of GO than MOD-Cu2O film. Moreover, reduction effect of self-oxidation Cu2O film to GO is comparable to that of environmental-friendly reducing agent of vitamin C. The present results offer a potentially eco-friendly and low-cost approach for the manufacture of reduced graphene oxide (RGO) by photocatalytic reduction.


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4601-4608 ◽  
Author(s):  
Pengyu Zhuang ◽  
Hanyu Fu ◽  
Ning Xu ◽  
Bo Li ◽  
Jun Xu ◽  
...  

AbstractInterfacial solar vapor generation has revived the solar-thermal-based desalination due to its high conversion efficiency of solar energy. However, most solar evaporators reported so far suffer from severe salt-clogging problems during solar desalination, leading to performance degradation and structural instability. Here, we demonstrate a free-standing salt-rejecting reduced graphene oxide (rGO) membrane serving as an efficient, stable, and antisalt-fouling solar evaporator. The evaporation rate of the membrane reaches up to 1.27 kg m−2 h−1 (solar–thermal conversion efficiency ∼79%) under one sun, out of 3.5 wt% brine. More strikingly, due to the tailored narrow interlayer spacing, the rGO membrane can effectively reject ions, preventing salt accumulation even for high salinity brine (∼8 wt% concentration). With enabled salt-antifouling capability, flexibility, as well as stability, our rGO membrane serves as a promising solar evaporator for high salinity brine treatment.


2021 ◽  
Author(s):  
Naeime Salandari-Jolge ◽  
Ali A. Ensafi ◽  
Behzad Rezaei

Dipyridamole is a prescribed medication used to treat cardiovascular diseases, angina pectoris, imaging tests for heart patients, and myocardial infarction. Therefore, high selectivity and sensitivity, low cost, and high-performance speed...


Sign in / Sign up

Export Citation Format

Share Document