scholarly journals Linking scales in sea ice mechanics

Author(s):  
Jérôme Weiss ◽  
Véronique Dansereau

Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell–elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue ‘Microdynamics of ice’.

2018 ◽  
Vol 12 (11) ◽  
pp. 3459-3476 ◽  
Author(s):  
Iina Ronkainen ◽  
Jonni Lehtiranta ◽  
Mikko Lensu ◽  
Eero Rinne ◽  
Jari Haapala ◽  
...  

Abstract. While variations of Baltic Sea ice extent and thickness have been extensively studied, there is little information about drift ice thickness, distribution, and its variability. In our study, we quantify the interannual variability of sea ice thickness in the Bay of Bothnia during the years 2003–2016. We use various different data sets: official ice charts, drilling data from the regular monitoring stations in the coastal fast ice zone, and helicopter and shipborne electromagnetic soundings. We analyze the different data sets and compare them to each other to characterize the interannual variability, to discuss the ratio of level and deformed ice, and to derive ice thickness distributions in the drift ice zone. In the fast ice zone the average ice thickness is 0.58±0.13 m. Deformed ice increases the variability of ice conditions in the drift ice zone, where the average ice thickness is 0.92±0.33 m. On average, the fraction of deformed ice is 50 % to 70 % of the total volume. In heavily ridged ice regions near the coast, mean ice thickness is approximately half a meter thicker than that of pure thermodynamically grown fast ice. Drift ice exhibits larger interannual variability than fast ice.


1998 ◽  
Vol 27 ◽  
pp. 427-432 ◽  
Author(s):  
Anthony P. Worby ◽  
Xingren Wu

The importance of monitoring sea ice for studies of global climate has been well noted for several decades. Observations have shown that sea ice exhibits large seasonal variability in extent, concentration and thickness. These changes have a significant impact on climate, and the potential nature of many of these connections has been revealed in studies with numerical models. An accurate representation of the sea-ice distribution (including ice extent, concentration and thickness) in climate models is therefore important for modelling global climate change. This work presents an overview of the observed sea-ice characteristics in the East Antarctic pack ice (60-150° E) and outlines possible improvements to the simulation of sea ice over this region by modifying the ice-thickness parameterisation in a coupled sea-ice-atmosphere model, using observational data of ice thickness and concentration. Sensitivity studies indicate that the simulation of East Antarctic sea ice can be improved by modifying both the “lead parameterisation” and “rafting scheme” to be ice-thickness dependent. The modelled results are currently out of phase with the observed data, and the addition of a multilevel ice-thickness distribution would improve the simulation significantly.


2018 ◽  
Author(s):  
David Schröder ◽  
Danny L. Feltham ◽  
Michel Tsamados ◽  
Andy Ridout ◽  
Rachel Tilling

Abstract. Estimates of Arctic sea ice thickness are available from the CryoSat-2 (CS2) radar altimetry mission during ice growth seasons since 2010. We derive the sub-grid scale ice thickness distribution (ITD) with respect to 5 ice thickness categories used in a sea ice component (CICE) of climate simulations. This allows us to initialize the ITD in stand-alone simulations with CICE and to verify the simulated cycle of ice thickness. We find that a default CICE simulation strongly underestimates ice thickness, despite reproducing the inter-annual variability of summer sea ice extent. We can identify the underestimation of winter ice growth as being responsible and show that increasing the ice conductive flux for lower temperatures (bubbly brine scheme) and accounting for the loss of drifting snow results in the simulated sea ice growth being more realistic. Sensitivity studies provide insight into the impact of initial and atmospheric conditions and, thus, on the role of positive and negative feedback processes. During summer, atmospheric conditions are responsible for 50 % of September sea ice thickness variability through the positive sea ice and melt pond albedo feedback. However, atmospheric winter conditions have little impact on winter ice growth due to the dominating negative conductive feedback process: the thinner the ice and snow in autumn, the stronger the ice growth in winter. We conclude that the fate of Arctic summer sea ice is largely controlled by atmospheric conditions during the melting season rather than by winter temperature. Our optimal model configuration does not only improve the simulated sea ice thickness, but also summer sea ice concentration, melt pond fraction, and length of the melt season. It is the first time CS2 sea ice thickness data have been applied successfully to improve sea ice model physics.


2021 ◽  
Author(s):  
Wolfgang Rack ◽  
Daniel Price ◽  
Christian Haas ◽  
Patricia J. Langhorne ◽  
Greg H. Leonard

<p>Sea ice cover is arguably the longest and best observed climate variable from space, with over four decades of highly reliable daily records of extent in both hemispheres. In Antarctica, a slight positive decadal trend in sea ice cover is driven by changes in the western Ross Sea, where a variation in weather patterns over the wider region forced a change in meridional winds. The distinguishing wind driven sea ice process in the western Ross Sea is the regular occurrence of the Ross Sea, McMurdo Sound, and Terra Nova Bay polynyas. Trends in sea ice volume and mass in this area unknown, because ice thickness and dynamics are particularly hard to measure.</p><p>Here we present the first comprehensive and direct assessment of large-scale sea-ice thickness distribution in the western Ross Sea. Using an airborne electromagnetic induction (AEM) ice thickness sensor towed by a fixed wing aircraft (Basler BT-67), we observed in November 2017 over a distance of 800 km significantly thicker ice than expected from thermodynamic growth alone. By means of time series of satellite images and wind data we relate the observed thickness distribution to satellite derived ice dynamics and wind data. Strong southerly winds with speeds of up to 25 ms<sup>-1</sup> in early October deformed the pack ice, which was surveyed more than a month later.</p><p>We found strongly deformed ice with a mean and maximum thickness of 2.0 and 15.6 m, respectively. Sea-ice thickness gradients are highest within 100-200 km of polynyas, where the mean thickness of the thickest 10% of ice is 7.6 m. From comparison with aerial photographs and satellite images we conclude that ice preferentially grows in deformational ridges; about 43% of the sea ice volume in the area between McMurdo Sound and Terra Nova Bay is concentrated in more than 3 m thick ridges which cover about 15% of the surveyed area. Overall, 80% of the ice was found to be heavily deformed and concentrated in ridges up to 11.8 m thick.</p><p>Our observations hold a link between wind driven ice dynamics and the ice mass exported from the western Ross Sea. The sea ice statistics highlighted in this contribution forms a basis for improved satellite derived mass balance assessments and the evaluation of sea ice simulations.</p>


2019 ◽  
Vol 12 (8) ◽  
pp. 3745-3758 ◽  
Author(s):  
François Massonnet ◽  
Antoine Barthélemy ◽  
Koffi Worou ◽  
Thierry Fichefet ◽  
Martin Vancoppenolle ◽  
...  

Abstract. The ice thickness distribution (ITD) is one of the core constituents of modern sea ice models. The ITD accounts for the unresolved spatial variability of sea ice thickness within each model grid cell. While there is a general consensus on the added physical realism brought by the ITD, how to discretize it remains an open question. Here, we use the ocean–sea ice general circulation model, Nucleus for European Modelling of the Ocean (NEMO) version 3.6 and Louvain-la-Neuve sea Ice Model (LIM) version 3 (NEMO3.6-LIM3), forced by atmospheric reanalyses to test how the ITD discretization (number of ice thickness categories, positions of the category boundaries) impacts the simulated mean Arctic and Antarctic sea ice states. We find that winter ice volumes in both hemispheres increase with the number of categories and attribute that increase to a net enhancement of basal ice growth rates. The range of simulated mean winter volumes in the various experiments amounts to ∼30 % and ∼10 % of the reference values (run with five categories) in the Arctic and Antarctic, respectively. This suggests that the way the ITD is discretized has a significant influence on the model mean state, all other things being equal. We also find that the existence of a thick category with lower bounds at ∼4 and ∼2 m for the Arctic and Antarctic, respectively, is a prerequisite for allowing the storage of deformed ice and therefore for fostering thermodynamic growth in thinner categories. Our analysis finally suggests that increasing the resolution of the ITD without changing the lower limit of the upper category results in small but not negligible variations of ice volume and extent. Our study proposes for the first time a bi-polar process-based explanation of the origin of mean sea ice state changes when the ITD discretization is modified. The sensitivity experiments conducted in this study, based on one model, emphasize that the choice of category positions, especially of thickest categories, has a primary influence on the simulated mean sea ice states while the number of categories and resolution have only a secondary influence. It is also found that the current default discretization of the NEMO3.6-LIM3 model is sufficient for large-scale present-day climate applications. In all cases, the role of the ITD discretization on the simulated mean sea ice state has to be appreciated relative to other influences (parameter uncertainty, forcing uncertainty, internal climate variability).


2003 ◽  
Vol 15 (1) ◽  
pp. 47-54 ◽  
Author(s):  
TINA TIN ◽  
MARTIN O. JEFFRIES ◽  
MIKKO LENSU ◽  
JUKKA TUHKURI

Ship-based observations of sea ice thickness using the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol provide information on ice thickness distribution at relatively low cost. This protocol uses a simple formula to calculate the mass of ice in ridges based on surface observations. We present two new formulae and compare these with results from the “Original” formula using data obtained in the Ross Sea in autumn and winter. The new “r-star” formula uses a more realistic ratio of sail and keel areas to transform dimensions of sails to estimates of mean keel areas. As a result, estimates of “equivalent thickness” (i.e. mean thickness of ice in ridged areas) increased by over 200%. The new “Probability” formula goes one step further, by incorporating the probability that a sail is associated with a keel underwater, and the probability that keels may be found under level surfaces. This resulted in estimates of equivalent thickness comparable with the Original formula. Estimates of equivalent thickness at one or two degree latitude resolution are sufficiently accurate for validating sea ice models. Although ridges are small features in the Ross Sea, we have shown that they constitute a significant fraction of the total ice mass.


1987 ◽  
Vol 40 (9) ◽  
pp. 1232-1242 ◽  
Author(s):  
Devinder S. Sodhi ◽  
Gordon F. N. Cox

A brief review of significant advances in the field of sea ice mechanics in the United States is presented in this paper. Emphasis is on ice forces on structures, as the subject relates to development of oil and gas resources in the southern Beaufort Sea. The main topics discussed here are mechanical properties, ice–structure interaction, modeling of sea ice drift, and oil industry research activities. Significant advances in the determination of ice properties are the development of testing procedures to obtain consistent results. Using stiff testing machines, researchers have been able to identify the dependence of tensile and compressive strengths on different parameters, eg, strain rate, temperature, grain size, c-axis orientation, porosity, and state of stress (uniaxial or multiaxial). Now reliable data exist on the tensile and compressive strengths of first-year and multi-year sea ice. Compressive strengths obtained from field testing of large specimens (6 × 3 × 2 m thick) were found to be within 30% of the strengths obtained from small samples tested in laboratory at the same temperature and strain rate as found in the field. Recent advances in the development of constitutive relations and yield criteria have incorporated the concept of damage mechanics to include the effect of microfracturing during the ice failure process. Ice forces generated during an ice–structure interaction are related to ice thickness and properties by conducting analytical or small-scale experimental studies, or both. Field measurements of ice forces have been made to assess the validity of theoretical and small-scale experimental results. There is good agreement between theoretical and small-scale experimental results for ice forces on conical structures. Theoretical elastic buckling loads also agree with the results of small-scale experiments. Though considerable insight has been achieved for ice crushing failure, estimation of ice forces for this mode is based on empirical relations developed from small-scale experiments. A good understanding of the ice failure process has been achieved when ice fails in a single failure mode, but our understanding of multi-modal ice failure still remains poor. Field measurements of effective pressure indicate that it decreases with increasing contact area. Research in fracture mechanics and nonsimultaneous failure is underway to explain this observed trend. Ice ridge formation and pile-up have been modeled, and the forces associated with these processes are estimated to be low. The modeling of sea ice drift has progressed to a point where it is able to determine the extent, thickness distribution, and drift velocity field of sea ice over the entire arctic basin. Components of this model relate to momentum balance, thermodynamic processes, ice thickness distribution, ice strength, and ice rheology.


2001 ◽  
Vol 33 ◽  
pp. 177-180 ◽  
Author(s):  
A. P. Worby ◽  
G. M. Bush ◽  
I. Allison

AbstractUpward-looking sonar (ULS) data are presented from a prototype instrument deployed at 63° 18’ S, 107°49’ E in 1994. These data show the seasonal evolution of the ice-draft distribution from May when predominantly thin ice is present, through October when substantially thicker ice has been formed by deformation. The mean ice draft reaches a maximum in August at 1.21 m, the same month in which ship-based observations from the same region show a peak in ice thickness. The observed distribution from ULS data is only for drafts > 0.3 m due to data losses caused by the low acoustic reflectivity of actively forming ice. The spring distributions show very little development of drafts > 3.0 m, and it is hypothesized that this is due to the cyclical nature of deformation in the East Antarctic pack-ice zone, and that periods of sustained pressure required to form very thick ice are uncommon in this region


2012 ◽  
Vol 6 (6) ◽  
pp. 1507-1526 ◽  
Author(s):  
J. Karvonen ◽  
B. Cheng ◽  
T. Vihma ◽  
M. Arkett ◽  
T. Carrieres

Abstract. An analysis of ice thickness distribution is a challenge, particularly in a seasonal sea ice zone with a strongly dynamic ice motion field, such as the Gulf of St. Lawrence off Canada. We present a novel automated method for ice concentration and thickness analysis combining modeling of sea ice thermodynamics and detection of ice motion on the basis of space-borne Synthetic Aperture Radar (SAR) data. Thermodynamic evolution of sea ice thickness in the Gulf of St. Lawrence was simulated for two winters, 2002–2003 and 2008–2009. The basin-scale ice thickness was controlled by atmospheric forcing, but the spatial distribution of ice thickness and concentration could not be explained by thermodynamics only. SAR data were applied to detect ice motion and ice surface structure during these two winters. The SAR analysis is based on estimation of ice motion between SAR image pairs and analysis of the local SAR texture statistics. Including SAR data analysis brought a significant added value to the results based on thermodynamics only. Our novel method combining the thermodynamic modeling and SAR yielded results that well match with the distribution of observations based on airborne Electromagnetic Induction (EM) method. Compared to the present operational method of producing ice charts for the Gulf of St. Lawrence, which is based on visual interpretation of SAR data, the new method reveals much more detailed and physically based information on spatial distribution of ice thickness. The algorithms can be run automatically, and the final products can then be used by ice analysts for operational ice service. The method is globally applicable to all seas where SAR data are available.


Sign in / Sign up

Export Citation Format

Share Document