Knowledge for animal breeding

The opportunities and knowledge required to improve the technology of animal breeding are assessed relative to the baseline of ca. 2 % annual genetic improvement that is possible at present. Present knowledge of the control of reproduction is such that multiple ovulation and embryo transfer (m.o.e.t.) schemes could virtually double the rate of genetic change in species such as cattle where the annual selection intensity is limited by the reproductive rate. There are direct indications from research that new knowledge to facilitate recognition of genetic merit could have a similar impact. Physical techniques such as computerized tomography could aid the assessment of carcass characteristics. Biological knowledge indicates that while biochemical techniques (enzymes or restriction fragment length polymorphism, r.f.l.p.), based on the importance of single alleles may make specific contributions, physiological techniques may have a more general role to play in the recognition of genetic merit. Research in molecular biology points the way to gene transfer, the original genetics of extra specific genes and the production of novel products such as blood clotting factors by domestic animals. Genetic improvement is welfare and ‘Green’ positive; once achieved, it is maintained with no further input but, as a long-term investment, there is the need for a social framework to ensure the application of knowledge to technology.


Author(s):  
Anne-Marie Neeteson ◽  
Santiago Avendaño ◽  
Alfons Koerhuis

Abstract Animal breeding for welfare and sustainability requires improving and optimizing environmental impact, productivity, robustness and welfare. Breeding is a long-term exercise at the start of the food chain with permanent cumulative outcomes, disseminated widely. This chapter explains, with a focus on poultry, breeding programme design and how broadening breeding goals and managing trait antagonism results in balanced breeding and more robust animal populations. Breeding progress in skeleton and skin health, physiology and body composition, and behaviour are addressed. The economic impact of welfare and environmental improvements is worked out, and the ethical and societal aspects of genetic improvement are put into perspective. The consideration of feedbacks of all stakeholders, including customers and the wider society, is crucial. For each crossbreed, breeders will continue to improve overall welfare, health, productivity and environmental impact, but between the crossbreeds there will be clear differences answering specific demands of concepts and brands.



2021 ◽  
Vol 22 (14) ◽  
pp. 7647
Author(s):  
E. Carlos Rodríguez-Merchán ◽  
Juan Andres De Pablo-Moreno ◽  
Antonio Liras

Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.



2021 ◽  
Author(s):  
Vishnu Ramasubramanian ◽  
William Beavis

AbstractPlant breeding is a decision making discipline based on understanding project objectives. Genetic improvement projects can have two competing objectives: maximize rate of genetic improvement and minimize loss of useful genetic variance. For commercial plant breeders competition in the marketplace forces greater emphasis on maximizing immediate genetic improvements. In contrast public plant breeders have an opportunity, perhaps an obligation, to place greater emphasis on minimizing loss of useful genetic variance while realizing genetic improvements. Considerable research indicates that short term genetic gains from Genomic Selection (GS) are much greater than Phenotypic Selection (PS), while PS provides better long term genetic gains because PS retains useful genetic diversity during the early cycles of selection. With limited resources must a soybean breeder choose between the two extreme responses provided by GS or PS? Or is it possible to develop novel breeding strategies that will provide a desirable compromise between the competing objectives? To address these questions, we decomposed breeding strategies into decisions about selection methods, mating designs and whether the breeding population should be organized as family islands. For breeding populations organized into islands decisions about possible migration rules among family islands were included. From among 60 possible strategies, genetic improvement is maximized for the first five to ten cycles using GS, a hub network mating design in breeding populations organized as fully connected family islands and migration rules allowing exchange of two lines among islands every other cycle of selection. If the objectives are to maximize both short-term and long-term gains, then the best compromise strategy is similar except a genomic mating design, instead of a hub networked mating design, is used. This strategy also resulted in realizing the greatest proportion of genetic potential of the founder populations. Weighted genomic selection applied to both non-isolated and island populations also resulted in realization of the greatest proportion of genetic potential of the founders, but required more cycles than the best compromise strategy.



2021 ◽  
Vol 12 ◽  
Author(s):  
Vishnu Ramasubramanian ◽  
William D. Beavis

Plant breeding is a decision-making discipline based on understanding project objectives. Genetic improvement projects can have two competing objectives: maximize the rate of genetic improvement and minimize the loss of useful genetic variance. For commercial plant breeders, competition in the marketplace forces greater emphasis on maximizing immediate genetic improvements. In contrast, public plant breeders have an opportunity, perhaps an obligation, to place greater emphasis on minimizing the loss of useful genetic variance while realizing genetic improvements. Considerable research indicates that short-term genetic gains from genomic selection are much greater than phenotypic selection, while phenotypic selection provides better long-term genetic gains because it retains useful genetic diversity during the early cycles of selection. With limited resources, must a soybean breeder choose between the two extreme responses provided by genomic selection or phenotypic selection? Or is it possible to develop novel breeding strategies that will provide a desirable compromise between the competing objectives? To address these questions, we decomposed breeding strategies into decisions about selection methods, mating designs, and whether the breeding population should be organized as family islands. For breeding populations organized into islands, decisions about possible migration rules among family islands were included. From among 60 possible strategies, genetic improvement is maximized for the first five to 10 cycles using genomic selection and a hub network mating design, where the hub parents with the largest selection metric make large parental contributions. It also requires that the breeding populations be organized as fully connected family islands, where every island is connected to every other island, and migration rules allow the exchange of two lines among islands every other cycle of selection. If the objectives are to maximize both short-term and long-term gains, then the best compromise strategy is similar except that the mating design could be hub network, chain rule, or a multi-objective optimization method-based mating design. Weighted genomic selection applied to centralized populations also resulted in the realization of the greatest proportion of the genetic potential of the founders but required more cycles than the best compromise strategy.



2005 ◽  
Vol 360 (1459) ◽  
pp. 1479-1488 ◽  
Author(s):  
S Brotherstone ◽  
M Goddard

Genetic improvement of dairy cows, which has increased the milk yield of cows in the UK by 1200 kg per lactation in 12 years, is an excellent example of the application of quantitative genetics to agriculture. The most important traits of dairy cattle are expressed only in females, but the main opportunity for selection is in males. Despite this, genetic improvement was achieved by the invention of a new statistical methodology, called ‘best linear unbiased prediction’ to estimate the breeding value of bulls. Intense selection of the best bulls, combined with the worldwide use of these bulls through artificial insemination and frozen semen, has created a global population and caused concern that the genetic variation available in the future will be reduced. Maintenance of genetic variation and long-term genetic gains would be aided by rational payment systems, use of crossbreeding where profitable, inclusion of all economically important traits in the breeding objective, recognition of genotype by environment interactions and the use of selection algorithms that balance estimated breeding value against the average relationship among the selected animals. Fortunately, all of these things are happening to some degree.



2022 ◽  
pp. 317-337
Author(s):  
D.N. Das ◽  
D. Paul ◽  
Sukanta Mondal


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 876 ◽  
Author(s):  
Wu ◽  
Duan ◽  
Zhang

In order to understand the long-term growth variation of Chinese fir’s geographical provenances and promote long-term genetic improvement, the experimental provenance forest of Chinese fir planted in 1981 was taken as a research object.The provenances originated from southeastern China. The study measured each diameter at breast height (DBH) and tree height at 5, 6, 8, 12, and 33 years of age and analyzed the genetic variation of major growth traits of trees withdifferent provenances at different forest ages. Additionally, the study analyzed the geographical variation of Chinese fir by using the trend surface and principal component analysis (PCA) and evaluated the long-term selection effect of provenance by using juvenile–mature correlation and cluster analysis. The heritability of the DBH, treeheight, and volume of Chinese fir with different provenances reached 0.35–0.76, and with increasing forest age, the heritability of each trait showed a rising and gradually stabilizing trend. There were obvious differences in geographical variation patterns among the tested provenances, and both the DBH and the tree height growth patterns are two-way gradients. This variation pattern is associated with climatic conditions in different regions, and the factors limiting the growth difference of Chinese fir may be the mean temperature in winter and the precipitation in autumn and winter.An early selection age has a significant effect on shortening the timber production cycle of Chinese fir. The selection of trees aged between 6 and 12 years is more conducive to improving the efficiency of the genetic improvement of Chinese fir.The 42 excellent provenances selected from the 33-year-old mature Chinese fir forests have a larger increase in growth than trees with local provenances, which are concentrated in the Wuyi and Xuefeng mountains and are suitable for plantation in the Guangxi Zhuang Autonomous Region and surrounding areas.



1997 ◽  
Vol 26 (4) ◽  
pp. 217-225 ◽  
Author(s):  
Alan Teale

The unique potential of biotechnology to provide new solutions to old problems constraining the contribution of livestock to farming systems in the developing world is emphasized in this paper. An overview of biotechnological aspects of livestock research within the CGIAR, including a description of the research approaches being adopted at the International Livestock Research Institute, is provided. The products of the research are then identified, and their potential applications in disease diagnosis and vaccination, as well as in the fields of animal breeding and genetic improvement, are described.



Sign in / Sign up

Export Citation Format

Share Document