Pathway and stability of protein folding

1991 ◽  
Vol 332 (1263) ◽  
pp. 171-176 ◽  

We describe an experimental approach to the problem of protein folding and stability which measures interaction energies and maps structures of intermediates and transition states during the folding pathway. The strategy is based on two steps. First, protein engineering is used to remove interactions that stabilize defined positions in barnase, the RNAse from Bacillus amyloliquefaciens . The consequent changes in stability are measured from the changes in free energy of unfolding of the protien. Second, each mutation is used as a probe of the structure around the wild-type side chain during the folding process. Kinetic measurements are made on the folding and unfolding of wild-type and mutant proteins. The kinetic and thermodynamic data are combined and analysed to show the role of individual side chains in the stabilization of the folded, transition and intermediate states of the protein. The protein engineering experiments are corroborated by nuclear magnetic resonance studies of hydrogen exchange during the folding process. Folding is a multiphasic process in which α-helices and β-sheet are formed relatively early. Formation of the hydrophobic core by docking helix and sheet is (partly) rate determining. The final steps involve the forming of loops and the capping of the N-termini of helices.

Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Iwona Sadura ◽  
Dariusz Latowski ◽  
Jana Oklestkova ◽  
Damian Gruszka ◽  
Marek Chyc ◽  
...  

Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.


2013 ◽  
Vol 4 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Yuji Hidaka ◽  
Shigeru Shimamoto

AbstractDisulfide-containing proteins are ideal models for studies of protein folding as the folding intermediates can be observed, trapped, and separated by HPLC during the folding reaction. However, regulating or analyzing the structures of folding intermediates of peptides and proteins continues to be a difficult problem. Recently, the development of several techniques in peptide chemistry and biotechnology has resulted in the availability of some powerful tools for studying protein folding in the context of the structural analysis of native, mutant proteins, and folding intermediates. In this review, recent developments in the field of disulfide-coupled peptide and protein folding are discussed, from the viewpoint of chemical and biotechnological methods, such as analytical methods for the detection of disulfide pairings, chemical methods for disulfide bond formation between the defined Cys residues, and applications of diselenide bonds for the regulation of disulfide-coupled peptide and protein folding.


2005 ◽  
Vol 71 (2) ◽  
pp. 621-628 ◽  
Author(s):  
Zhi-Wei Chen ◽  
Cheng-Ying Jiang ◽  
Qunxin She ◽  
Shuang-Jiang Liu ◽  
Pei-Jin Zhou

ABSTRACT Analysis of known sulfur oxygenase-reductases (SORs) and the SOR-like sequences identified from public databases indicated that they all possess three cysteine residues within two conserved motifs (V-G-P-K-V-C31 and C101-X-X-C104; numbering according to the Acidianus tengchongensis numbering system). The thio-modifying reagent N-ethylmaleimide and Zn2+ strongly inhibited the activities of the SORs of A. tengchongensis, suggesting that cysteine residues are important. Site-directed mutagenesis was used to construct four mutant SORs with cysteines replaced by serine or alanine. The purified mutant proteins were investigated in parallel with the wild-type SOR. Replacement of any cysteine reduced SOR activity by 98.4 to 100%, indicating that all the cysteine residues are crucial to SOR activities. Circular-dichroism and fluorescence spectrum analyses revealed that the wild-type and mutant SORs have similar structures and that none of them form any disulfide bond. Thus, it is proposed that three cysteine residues, C31 and C101-X-X-C104, in the conserved domains constitute the putative binding and catalytic sites of SOR. Furthermore, enzymatic activity assays of the subcellular fractions and immune electron microscopy indicated that SOR is not only present in the cytoplasm but also associated with the cytoplasmic membrane of A. tengchongensis. The membrane-associated SOR activity was colocalized with the activities of sulfite:acceptor oxidoreductase and thiosulfate:acceptor oxidoreductase. We tentatively propose that these enzymes are located in close proximity on the membrane to catalyze sulfur oxidation in A. tengchongensis.


1990 ◽  
Vol 10 (12) ◽  
pp. 6257-6263
Author(s):  
A Frankel ◽  
P Welsh ◽  
J Richardson ◽  
J D Robertus

The gene for ricin toxin A chain was modified by site-specific mutagenesis to change arginine 180 to alanine, glutamine, methionine, lysine, or histidine. Separately, glutamic acid 177 was changed to alanine and glutamic acid 208 was changed to aspartic acid. Both the wild-type and mutant proteins were expressed in Escherichia coli and, when soluble, purified and tested quantitatively for enzyme activity. A positive charge at position 180 was found necessary for solubility of the protein and for enzyme activity. Similarly, a negative charge with a proper geometry in the vicinity of position 177 was critical for ricin toxin A chain catalysis. When glutamic acid 177 was converted to alanine, nearby glutamic acid 208 could largely substitute for it. This observation provided valuable structural information concerning the nature of second-site mutations.


2020 ◽  
Vol 21 (20) ◽  
pp. 7632
Author(s):  
Mateusz Banach ◽  
Katarzyna Stapor ◽  
Leszek Konieczny ◽  
Piotr Fabian ◽  
Irena Roterman

Research on the protein folding problem differentiates the protein folding process with respect to the duration of this process. The current structure encoded in sequence dogma seems to be clearly justified, especially in the case of proteins referred to as fast-folding, ultra-fast-folding or downhill. In the present work, an attempt to determine the characteristics of this group of proteins using fuzzy oil drop model is undertaken. According to the fuzzy oil drop model, a protein is a specific micelle composed of bi-polar molecules such as amino acids. Protein folding is regarded as a spherical micelle formation process. The presence of covalent peptide bonds between amino acids eliminates the possibility of free mutual arrangement of neighbors. An example would be the construction of co-micelles composed of more than one type of bipolar molecules. In the case of fast folding proteins, the amino acid sequence represents the optimal bipolarity system to generate a spherical micelle. In order to achieve the native form, it is enough to have an external force field provided by the water environment which directs the folding process towards the generation of a centric hydrophobic core. The influence of the external field can be expressed using the 3D Gaussian function which is a mathematical model of the folding process orientation towards the concentration of hydrophobic residues in the center with polar residues exposed on the surface. The set of proteins under study reveals a hydrophobicity distribution compatible with a 3D Gaussian distribution, taken as representing an idealized micelle-like distribution. The structure of the present hydrophobic core is also discussed in relation to the distribution of hydrophobic residues in a partially unfolded form.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1549-1549
Author(s):  
Jorge P. Pinto ◽  
Pedro Ramos ◽  
Sergio de Almeida ◽  
Susana Oliveira ◽  
Laura Breda ◽  
...  

Abstract Studies done in non-hepatic cell lines, focusing on the interaction between HFE with TFR1 and β-2M proved insufficient to explain the discrepancies found in the clinical penetrance of hemochromatosis in subjects carrying the C282Y mutation. Our first goal was to investigate the role of HFE wild type (wt) and mutant proteins (C282Y and H63D) in a human hepatic cell line, focusing on the cellular localization and interaction of HFE with the expression of other iron related proteins. HFE mutant C282Y was found to be retained in the endoplasmic reticulum (ER). Thus, in addition, we investigated the effect of HFE wt and mutant proteins on Calreticulin, which is a chaperon protein that responds to ER stress and has a protective effect on oxidative damage in some cell lines. Here we report setting up a stable transfection of wt- and mutant-HFE in a hepatic cell line (HepG2) and examine the intracellular distribution of wt- and HFE mutants, their effect on iron intake independently of TFR1 and on the expression of other iron and ER stress response genes, namely Hepcidin and Calreticulin. In addition, we validated some of the novel effects of HFE on Calreticulin using peripheral blood mononuclear cells from HFE patients. The localization of the HFE variants was analyzed using KDEL and Golgin-97 as ER and the Golgi complex markers, respectively. HFE C282Y shows a high degree of overlap with the ER markers, confirming a retention of this variant in this organelle. Over-expression of the HFE wt impaired the intake of 55Fe relatively to transfected control cells (P<0.008) independently of TFR1, as demonstrated by RNAi silencing. Hamp RNA expression was decreased in cells over expressing C282Y in comparison to HFE wt cells (P<0.011). Finally over-expression of HFE wt decreases Calreticulin mRNA, whereas the C282Y had an opposite effect, compared to the control cell line. A similar result was observed in peripheral blood mononuclear cells (PMBC) of C282Y homozygous HFE patients, compared to wild type blood donors (P<0.006). Interestingly, this data suggest that synthesis of the HFE mutant C282Y triggers a protective effect on oxidative damage mediated by Calreticulin. In fact, HepG2 cells over-expressing C282Y showed lower levels of ROS than HFE wt (P<0.004). This observation might contribute to explain some of the discrepancies seen in the clinical penetrance of the disease in C282Y carrying subjects. The direct effect of the mutant HFE C282Y on mRNA expression of hepcidin also demonstrated here for the first time corroborates and provides a molecular basis for earlier reports of low hepcidin levels in HH patients and in Hfe-KO mice.


2002 ◽  
Vol 76 (9) ◽  
pp. 4199-4211 ◽  
Author(s):  
Miriam I. Quiñones-Kochs ◽  
Linda Buonocore ◽  
John K. Rose

ABSTRACT The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.


2005 ◽  
Vol 386 (9) ◽  
Author(s):  
Karin Welfle ◽  
Florencia Pratto ◽  
Rolf Misselwitz ◽  
Joachim Behlke ◽  
Juan C. Alonso ◽  
...  

AbstractThe dimeric regulatory protein wild-type ω (wt ω


2003 ◽  
Vol 77 (6) ◽  
pp. 3595-3601 ◽  
Author(s):  
Inge Erk ◽  
Jean-Claude Huet ◽  
Mariela Duarte ◽  
Stéphane Duquerroy ◽  
Felix Rey ◽  
...  

ABSTRACT The recent determination of the crystal structure of VP6, the major capsid protein of rotavirus, revealed a trimer containing a central zinc ion coordinated by histidine 153 from each of the three subunits. The role of the zinc ion in the functions of VP6 was investigated by site-directed mutagenesis. The mutation of histidine 153 into a serine (H153S and H153S/S339H) did not prevent the formation of VP6 trimers. At pH <7.0, about the pK of histidine, wild-type and mutated VP6 proteins display similar properties, giving rise to identical tubular and spherical assemblies. However, at pH >7.0, histidine 153 mutant proteins did not assemble into the characteristic 45-nm-diameter tubes, in contrast to wild-type VP6. These observations showed that under conditions in which histidine residues are not charged, the properties of VP6 depended on the presence of the centrally coordinated zinc atom in the trimer. Indeed, wild-type VP6 depleted of the zinc ion by a high concentration (100 mM) of a metal-chelating agent behaved like the H153 mutant proteins. The susceptibility of wild-type VP6 to proteases is greatly increased in the absence of zinc. NH2-terminal sequencing of the proteolytic fragments showed that they all contained the β-sheet-rich VP6 head domain, which appeared to be less sensitive to protease activity than the α-helical basal domain. Finally, the mutant proteins assembled well on cores, as demonstrated by both electron microscopy and rescue of transcriptase activity. Zinc is thus not necessary for the transcription activity. All of these observations suggest that, in solution, VP6 trimers present a structural flexibility that is controlled by the presence of a zinc ion.


Sign in / Sign up

Export Citation Format

Share Document