scholarly journals Flowering in time: genes controlling photoperiodic flowering in Arabidopsis

2001 ◽  
Vol 356 (1415) ◽  
pp. 1761-1767 ◽  
Author(s):  
Jo Putterill

Successful sexual reproduction in plants relies upon the strict coordination of flowering time with favourable seasons of the year. One of the most important seasonal cues for the model plant Arabidopsis thaliana ( Arabidopsis ) is day length. Genes influencing flowering time in Arabidopsis have been isolated, some of which are involved in the perception and signalling of day length. This review discusses recent progress that has been made in understanding how Arabidopsis integrates environmental and internal signals to ensure a sharp transition to flowering and new insights on the role of the circadian clock in controlling the expression of genes that promote flowering in response to day length.

Author(s):  
Viviana Escudero ◽  
Darío Ferreira Sánchez ◽  
Isidro Abreu ◽  
Sara Sopeña-Torres ◽  
Natalia Makarovsky-Saavedra ◽  
...  

Abstract Zinc is an essential nutrient at low concentrations, but toxic at slightly higher ones. It has been proposed that hyperaccumulator plants may use the excess zinc to fend off pathogens and herbivores. However, there is little evidence of a similar response in other plants. Here we show that Arabidopsis thaliana leaves inoculated with the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM) accumulate zinc and manganese at the infection site. Zinc accumulation did not occur in a double mutant in the zinc transporters HEAVY METAL ATPASE2 and HEAVY METAL ATPASE4 (HMA2 and HMA4), which has reduced zinc translocation from roots to shoots. Consistent with a role in plant immunity, expression of HMA2 and HMA4 was up-regulated upon PcBMM inoculation, and hma2hma4 mutants were more susceptible to PcBMM infection. This phenotype was rescued upon zinc supplementation. The increased susceptibility to PcBMM infection was not due to the diminished expression of genes involved in the salicylic acid, ethylene, or jasmonate pathways since they were constitutively up-regulated in hma2hma4 plants. Our data indicate a role of zinc in resistance to PcBMM in plants containing ordinary levels of zinc. This layer of immunity runs in parallel to the already characterized defence pathways, and its removal has a direct effect on resistance to pathogens.


2019 ◽  
Author(s):  
Barbara A M Paffendorf ◽  
Rawan Qassrawi ◽  
Andrea M Meys ◽  
Laura Trimborn ◽  
Andrea Schrader

Pleiotropic regulatory factors mediate concerted responses of the plant’s trait network to endogenous and exogenous cues. TRANSPARENT TESTA GLABRA 1 (TTG1) is a pleiotropic regulator that has been predominantly described in its role as a regulator of early accessible developmental traits. Although its closest homologs LIGHT-REGULATED WD1 (LWD1) and LWD2 are regulators of photoperiodic flowering, a role of TTG1 in flowering time regulation has not been reported. Here we reveal that TTG1 is a regulator of flowering time in Arabidopsis thaliana and changes transcription levels of different targets within the flowering time regulatory pathway. TTG1 mutants flower early and TTG1 overexpression lines flower late at long-day conditions. Consistently, TTG1 can suppress the transcript levels of the floral integrators FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO1 and can act as an activator of circadian clock components. Moreover, TTG1 might form feedback loops at the protein level. The TTG1 protein interacts with PSEUDO RESPONSE REGULATOR (PRR)s and basic HELIX-LOOP-HELIX 92 (bHLH92) in yeast. In planta, the respective pairs exhibit interesting patterns of localization including a recruitment of TTG1 by PRR5 to subnuclear foci. This mechanism proposes additional layers of regulation by TTG1 and might aid to specify the function of bHLH92. Within another branch of the pathway, TTG1 can elevate FLOWERING LOCUS C (FLC) transcript levels. FLC mediates signals from the vernalization, ambient temperature and autonomous pathway and the circadian clock is pivotal for the plant to synchronize with diurnal cycles of environmental stimuli like light and temperature. Our results suggest an unexpected positioning of TTG1 upstream of FLC and upstream of the circadian clock. In this light, this points to an adaptive value of the role of TTG1 in respect to flowering time regulation.


2021 ◽  
Vol 11 (8) ◽  
pp. 820
Author(s):  
Mengyuan Ge ◽  
Sandra Merscher ◽  
Alessia Fornoni

Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of “fatty kidney disease” and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4763-4770 ◽  
Author(s):  
W.J. Soppe ◽  
L. Bentsink ◽  
M. Koornneef

The transition to flowering is a crucial moment in a plant's life cycle of which the mechanism has only been partly revealed. In a screen for early flowering, after mutagenesis of the late-flowering fwa mutant of Arabidopsis thaliana, the early flowering in short days (efs) mutant was identified. Under long-day light conditions, the recessive monogenic efs mutant flowers at the same time as wild type but, under short-day conditions, the mutant flowers much earlier. In addition to its early-flowering phenotype, efs has several pleiotropic effects such as a reduction in plant size, fertility and apical dominance. Double mutant analysis with several late-flowering mutants from the autonomous promotion (fca and fve) and the photoperiod promotion (co, fwa and gi) pathways of flowering showed that efs reduces the flowering time of all these mutants. However, efs is completely epistatic to fca and fve but additive to co, fwa and gi, indicating that EFS is an inhibitor of flowering specifically involved in the autonomous promotion pathway. A vernalisation treatment does not further reduce the flowering time of the efs mutant, suggesting that vernalisation promotes flowering through EFS. By comparing the length of the juvenile and adult phases of vegetative growth for wild-type, efs and the double mutant plants, it is apparent that efs mainly reduces the length of the adult phase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoying Wang ◽  
Peng Zhou ◽  
Rongyu Huang ◽  
Jianfu Zhang ◽  
Xinhao Ouyang

The photoperiodic flowering pathway is crucial for plant development to synchronize internal signaling events and external seasons. One hundred years after photoperiodic flowering was discovered, the underlying core signaling network has been elucidated in model plants such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max). Here, we review the progress made in the photoperiodic flowering area and summarize previously accepted photoperiodic flowering models. We then introduce a new model based on daylength recognition by florigen. By determining the expression levels of the florigen gene, this model can assess the mechanism of daylength sensing and crop latitude adaptation. Future applications of this model under the constraints of global climate change are discussed.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1105D-1105
Author(s):  
Philip Stewart ◽  
Daniel Sargent ◽  
Thomas Davis ◽  
Kevin Folta

The molecular mechanisms governing photoperiodic flowering has been well defined in the model systems of Arabidopsis thaliana(a facultative long-day plant) and rice (a short-day plant). Photoperiodic flowering control is of great interest to strawberry (Fragaria×ananassa) breeders and growers, and the genetics of photoperiodic flowering have been well studied, indicating that response to day-length is regulated by a small number of genetic loci. Cultivated strawberry is octoploid, so identification of these loci through forward genetic analyses is not practical. Since the componentry of the flowering response is generally conserved between monocots and dicots, we may assume that similar, if not identical, systems are functioning in strawberry as well. The goal of this work is to understand how cultivars likely containing identical photoperiod-sensing components are differentially sensitive to daylength. The expression patterns of genes relevant to the floraltransition were assessed under specific photoperiod conditions to assess similarities and/or differences to the model systems.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8303 ◽  
Author(s):  
Barbara A.M. Paffendorf ◽  
Rawan Qassrawi ◽  
Andrea M. Meys ◽  
Laura Trimborn ◽  
Andrea Schrader

Pleiotropic regulatory factors mediate concerted responses of the plant’s trait network to endogenous and exogenous cues. TRANSPARENT TESTA GLABRA 1 (TTG1) is such a factor that has been predominantly described as a regulator of early developmental traits. Although its closest homologs LIGHT-REGULATED WD1 (LWD1) and LWD2 affect photoperiodic flowering, a role of TTG1 in flowering time regulation has not been reported. Here we reveal that TTG1 is a regulator of flowering time in Arabidopsis thaliana and changes transcript levels of different targets within the flowering time regulatory pathway. TTG1 mutants flower early and TTG1 overexpression lines flower late at long-day conditions. Consistently, TTG1 can suppress the transcript levels of the floral integrators FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO1 and can act as an activator of circadian clock components. Moreover, TTG1 might form feedback loops at the protein level. The TTG1 protein interacts with PSEUDO RESPONSE REGULATOR (PRR)s and basic HELIX-LOOP-HELIX 92 (bHLH92) in yeast. In planta, the respective pairs exhibit interesting patterns of localization including a recruitment of TTG1 by PRR5 to subnuclear foci. This mechanism proposes additional layers of regulation by TTG1 and might aid to specify the function of bHLH92. Within another branch of the pathway, TTG1 can elevate FLOWERING LOCUS C (FLC) transcript levels. FLC mediates signals from the vernalization, ambient temperature and autonomous pathway and the circadian clock is pivotal for the plant to synchronize with diurnal cycles of environmental stimuli like light and temperature. Our results suggest an unexpected positioning of TTG1 upstream of FLC and upstream of the circadian clock. In this light, this points to an adaptive value of the role of TTG1 in respect to flowering time regulation.


2009 ◽  
Vol 5 (S266) ◽  
pp. 238-249
Author(s):  
Christian M. Boily

AbstractIn this brief review I summarise recent progress in the area of stellar dynamics, focusing on the dynamics of bound, self-gravitating stellar associations in isolation and (approximate) equilibrium. The basics of stellar dynamics are first outlined and the importance of stellar evolution is stressed. Subsequently, I argue that the evolution of anisotropic clusters of stars still holds solutions to current outstanding problems, such as the dynamics of galactic nuclei. I take a more personal standpoint when discussing the role of stellar evolution in the dynamics on relaxation timescales and draw from several recent models to underscore that a major step forward has been made in coupling stellar evolution and dynamics. I then briefly visit the issue of multiple stars and highlight some as yet unsolved problems.


2021 ◽  
Author(s):  
Feng Qin ◽  
Buzhu Yu ◽  
Weiqi Li

Abstract Heat shock proteins (HSPs) are stress-responsive proteins that are conserved across all organisms. Heat shock protein 101 (HSP101) has an important role in thermotolerance owing to its chaperone activity. However, if and how it functions in development under nonstress conditions is not yet known. By using physiological, molecular, and genetic methods, we investigated the role of HSP101 in the control of flowering in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) under nonstress conditions. Knockout and overexpression of HSP101 cause late and early flowering, respectively. Late flowering can be restored by rescue of HSP101. HSP101 regulates the expression of genes involved in the six known flowering pathways; the most negatively regulated genes are FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP); downstream integrators of the flowering pathways are positively regulated. The late-flowering phenotype of loss-of-HSP101 mutants is suppressed by both the mutations of FLC and SVP. The responses of flowering time to exogenous signals do not change in HSP101 mutants. HSP101 is also found in nonspecific regions according to subcellular localization. We found that HSP101 promotes flowering under nonstress conditions and that this promotion depends on FLC and SVP. Our data suggest that this promotion could occur through a multiple gene regulation mechanism.


Sign in / Sign up

Export Citation Format

Share Document