scholarly journals Immune response to stem cells and strategies to induce tolerance

2007 ◽  
Vol 362 (1484) ◽  
pp. 1343-1356 ◽  
Author(s):  
Puspa Batten ◽  
Nadia A Rosenthal ◽  
Magdi H Yacoub

Although recent progress in cardiovascular tissue engineering has generated great expectations for the exploitation of stem cells to restore cardiac form and function, the prospects of a common mass-produced cell resource for clinically viable engineered tissues and organs remain problematic. The refinement of stem cell culture protocols to increase induction of the cardiomyocyte phenotype and the assembly of transplantable vascularized tissue are areas of intense current research, but the problem of immune rejection of heterologous cell type poses perhaps the most significant hurdle to overcome. This article focuses on the potential advantages and problems encountered with various stem cell sources for reconstruction of the damaged or failing myocardium or heart valves and also discusses the need for integrating advances in developmental and stem cell biology, immunology and tissue engineering to achieve the full potential of cardiac tissue engineering. The ultimate goal is to produce ‘off-the-shelf’ cells and tissues capable of inducing specific immune tolerance.

2011 ◽  
Vol 22 (2) ◽  
pp. 91-98 ◽  
Author(s):  
Carlos Estrela ◽  
Ana Helena Gonçalves de Alencar ◽  
Gregory Thomas Kitten ◽  
Eneida Franco Vencio ◽  
Elisandra Gava

In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that range from Alzheimer’s disease to cardiac ischemia and regenerative medicine, like bone or tooth loss. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental tissues are considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. In dentistry, stem cell biology and tissue engineering are of great interest since may provide an innovative for generation of clinical material and/or tissue regeneration. Mesenchymal stem cells were demonstrated in dental tissues, including dental pulp, periodontal ligament, dental papilla, and dental follicle. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including, dental tissue, nerves and bone regeneration. More recently, another source of stem cell has been successfully generated from human somatic cells into a pluripotent stage, the induced pluripotent stem cells (iPS cells), allowing creation of patient- and disease-specific stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental stem cell an attractive source of mesenchymal stem cells for tissue regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in the tissue regeneration.


2017 ◽  
Vol 2 (1) ◽  
pp. 62-72 ◽  
Author(s):  
Nima Khadem Mohtaram ◽  
Vahid Karamzadeh ◽  
Yousef Shafieyan ◽  
Stephanie M. Willerth

Abstract Tissue engineering, the process of combining bioactive scaffolds often with cells to produce replacements for damaged organs, represents an enormous market opportunity. This review critically evaluates the commercialization potential of electrospun scaffolds for applications in stem cell biology, including tissue engineering. First, it provides an overview of pluripotent stem cells (PSCs) and their defining properties, pluripotency and the ability to self-renew. These cells serve as an important tool for engineering tissues, including for clinical applications. Next, we review the technique of electrospinning and its promise for fabricating cell culture substrates and scaffolds for directing tissue formation from stem cells and compare these scaffolds to existing technologies, such as hydrogels. We address the associated market for electrospun scaffolds for PSCs and its potential for growth along with highlighting the importance of 3D cell culture substrates for PSCs by analyzing the net capital invested in this market and the associated growth rate. This review finishes by detailing the current state of commercializing electrospun scaffolds along with pathways for translating these scaffolds from research laboratories into successful start-up companies and the associated challenges with this process.


2018 ◽  
Vol 2 (1) ◽  
pp. 3-5
Author(s):  
Mridha Sharma ◽  
Kirandeep Kaur

The human body is an intricate system consisting of numerous cells and tissues working in an organized fashion for the sustenance of life and stem cell biology become an important field for the understanding of tissue regeneration and implementation of regenerative medicine. Stem cells have capability of replicating themselves and can be readily available at the time of a planned procedure. Furthermore, it’s been shown that these cells have high potential to serve as resources not for medical therapies and tissue engineering, but also for dental or bone reconstruction. Stem cell research is not merely a science fiction but has rather opened the door for future treatment modalities.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2538
Author(s):  
Vineeta Sharma ◽  
Sanat Kumar Dash ◽  
Kavitha Govarthanan ◽  
Rekha Gahtori ◽  
Nidhi Negi ◽  
...  

Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miguel F. Tenreiro ◽  
Ana F. Louro ◽  
Paula M. Alves ◽  
Margarida Serra

AbstractThe adult heart is a vital and highly specialized organ of the human body, with limited capability of self-repair and regeneration in case of injury or disease. Engineering biomimetic cardiac tissue to regenerate the heart has been an ambition in the field of tissue engineering, tracing back to the 1990s. Increased understanding of human stem cell biology and advances in process engineering have provided an unlimited source of cells, particularly cardiomyocytes, for the development of functional cardiac muscle, even though pluripotent stem cell-derived cardiomyocytes poorly resemble those of the adult heart. This review outlines key biology-inspired strategies reported to improve cardiomyocyte maturation features and current biofabrication approaches developed to engineer clinically relevant cardiac tissues. It also highlights the potential use of this technology in drug discovery science and disease modeling as well as the current efforts to translate it into effective therapies that improve heart function and promote regeneration.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2558
Author(s):  
Mihaela Olaru ◽  
Liliana Sachelarie ◽  
Gabriela Calin

With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.


2021 ◽  
pp. 088532822110185
Author(s):  
Yuksel Cetin ◽  
Merve G Sahin ◽  
Fatma N Kok

Cardiac tissue engineering focusing on biomaterial scaffolds incorporating cells from different sources has been explored to regenerate or repair damaged area as a lifesaving approach.The aim of this study was to evaluate the cardiomyocyte differentiation potential of human adipose mesenchymal stem cells (hAD-MSCs) as an alternative cell source on silk fibroin (SF) scaffolds for cardiac tissue engineering. The change in surface morphology of SF scaffolds depending on SF concentration (1–6%, w/v) and increase in their porosity upon application of unidirectional freezing were visualized by scanning electron microscopy (SEM). Swelling ratio was found to increase 2.4 fold when SF amount was decreased from 4% to 2%. To avoid excessive swelling, 4% SF scaffold with swelling ratio of 10% (w/w) was chosen for further studies.Biodegradation rate of SF scaffolds depended on enzymatic activity was found to be 75% weight loss of SF scaffolds at the day 14. The phenotype of hAD-MSCs and their multi-linage potential into chondrocytes, osteocytes, and adipocytes were shown by flow cytometry and immunohistochemical staining, respectively.The viability of hAD-MSCs on 3D SF scaffolds was determined as 90%, 118%, and 138% after 1, 7, and 14 days, respectively. The use of 3D SF scaffolds was associated with increased production of cardiomyogenic biomarkers: α-actinin, troponin I, connexin 43, and myosin heavy chain. The fabricated 3D SF scaffolds were proved to sustain hAD-MSCs proliferation and cardiomyogenic differentiation therefore, hAD-MSCs on 3D SF scaffolds may useful tool to regenerate or repair damaged area using cardiac tissue engineering techniques.


Sign in / Sign up

Export Citation Format

Share Document