scholarly journals Understanding the role of growth factors in embryonic development: insights from the lens

2011 ◽  
Vol 366 (1568) ◽  
pp. 1204-1218 ◽  
Author(s):  
F. J. Lovicu ◽  
J. W. McAvoy ◽  
R. U. de Iongh

Growth factors play key roles in influencing cell fate and behaviour during development. The epithelial cells and fibre cells that arise from the lens vesicle during lens morphogenesis are bathed by aqueous and vitreous, respectively. Vitreous has been shown to generate a high level of fibroblast growth factor (FGF) signalling that is required for secondary lens fibre differentiation. However, studies also show that FGF signalling is not sufficient and roles have been identified for transforming growth factor-β and Wnt/Frizzled families in regulating aspects of fibre differentiation. In the case of the epithelium, key roles for Wnt/β-catenin and Notch signalling have been demonstrated in embryonic development, but it is not known if other factors are required for its formation and maintenance. This review provides an overview of current knowledge about growth factor regulation of differentiation and maintenance of lens cells. It also highlights areas that warrant future study.

2002 ◽  
Vol 283 (1) ◽  
pp. L1-L11 ◽  
Author(s):  
Margaret K. Winkler ◽  
John L. Fowlkes

Chronic lung disease due to interstitial fibrosis can be a consequence of acute lung injury and inflammation. The inflammatory response is mediated through the migration of inflammatory cells, actions of proinflammatory cytokines, and the secretion of matrix-degrading proteinases. After the initial inflammatory insult, successful healing of the lung may occur, or alternatively, dysregulated tissue repair can result in scarring and fibrosis. On the basis of recent insights into the mechanisms underlying acute lung injury and its long-term consequences, data suggest that proteinases, such as the matrix metalloproteinases (MMPs), may not only be involved in the breakdown and remodeling that occurs during the injury but may also cause the release of growth factors and cytokines known to influence growth and differentiation of target cells within the lung. Through the release of and activation of fibrosis-promoting cytokines and growth factors such as transforming growth factor-β1, tumor necrosis factor-α, and insulin-like growth factors by MMPs, we propose that these metalloproteinases may be integral to the initiation and progression of pulmonary fibrosis.


Development ◽  
1991 ◽  
Vol 111 (2) ◽  
pp. 635-645 ◽  
Author(s):  
K.M. Stocker ◽  
L. Sherman ◽  
S. Rees ◽  
G. Ciment

In previous studies, we showed that neural crest (NC)-derived cells from embryonic quail dorsal root ganglia (DRG) and peripheral nerve (PN), which do not normally give rise to melanocytes, become committed to melanogenesis following treatment in culture with the phorbol ester drug 12-O-tetradecanoyl phorbol-13-acetate (TPA). These and other observations support the notion that melanocytes and Schwann cells are derived from a common bipotent intermediate in the neural crest lineage—the melanocyte/Schwann cell progenitor. In this study, we test the possibility that peptide growth factors found in the embryonic environment might act similarly to TPA to influence the fates of these cells. DRG and PN explants were cultured in medium supplemented with a variety of growth factors, and then the cultures were examined for the presence of pigment cells. We found that basic fibroblast growth factor (bFGF), but not various other growth factors, induced pigmentation in about 20% of these cultures. When low concentrations of TPA were included in the culture medium, bFGF augmented the TPA-induced pigmentation, significantly increasing the proportion of pigmented cultures. These effects of bFGF were age-dependent, and could be blocked by addition of a bFGF-neutralizing antibody to the culture medium. In contrast to these stimulatory effects of bFGF, transforming growth factor-beta 1 (TGF-beta 1) was found to inhibit the TPA- or bFGF-induced pigmentation of DRG cultures. These data suggest, therefore, that at least some NC-derived cells are responsive to bFGF and TGF-beta 1, and that these growth factors may play an important role in the control of NC cell fate.


2002 ◽  
Vol 283 (4) ◽  
pp. F707-F716 ◽  
Author(s):  
Elizabeth Gore-Hyer ◽  
Daniel Shegogue ◽  
Malgorzata Markiewicz ◽  
Shianlen Lo ◽  
Debra Hazen-Martin ◽  
...  

Transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) are ubiquitously expressed in various forms of tissue fibrosis, including fibrotic diseases of the kidney. To clarify the common and divergent roles of these growth factors in the cells responsible for pathological extracellular matrix (ECM) deposition in renal fibrosis, the effects of TGF-β and CTGF on ECM expression in primary human mesangial (HMCs) and human proximal tubule epithelial cells (HTECs) were studied. Both TGF-β and CTGF significantly induced collagen protein expression with similar potency in HMCs. Additionally, α2(I)-collagen promoter activity and mRNA levels were similarly induced by TGF-β and CTGF in HMCs. However, only TGF-β stimulated collagenous protein synthesis in HTECs. HTEC expression of tenascin-C (TN-C) was increased by TGF-β and CTGF, although TGF-β was the more potent inducer. Thus both growth factors elicit similar profibrogenic effects on ECM production in HMCs, while promoting divergent effects in HTECs. CTGF induction of TN-C, a marker of epithelial-mesenchymal transdifferentiation (EMT), with no significant induction of collagenous protein synthesis in HTECs, may suggest a more predominant role for CTGF in EMT rather than induction of excessive collagen deposition by HTECs during renal fibrosis.


1999 ◽  
Vol 277 (2) ◽  
pp. C183-C201 ◽  
Author(s):  
D. W. Powell ◽  
R. C. Mifflin ◽  
J. D. Valentich ◽  
S. E. Crowe ◽  
J. I. Saada ◽  
...  

Intestinal subepithelial myofibroblasts (ISEMF) and the interstitial cells of Cajal are the two types of myofibroblasts identified in the intestine. Intestinal myofibroblasts are activated and proliferate in response to various growth factors, particularly the platelet-derived growth factor (PDGF) family, which includes PDGF-BB and stem cell factor (SCF), through expression of PDGF receptors and the SCF receptor c- kit. ISEMF have been shown to play important roles in the organogenesis of the intestine, and growth factors and cytokines secreted by these cells promote epithelial restitution and proliferation, i.e., wound repair. Their role in the fibrosis of Crohn’s disease and collagenous colitis is being investigated. Through cyclooxygenase (COX)-1 and COX-2 activation, ISEMF augment intestinal ion secretion in response to certain secretagogues. By forming a subepithelial barrier to Na+ diffusion, they create a hypertonic compartment that may account for the ability of the gut to transport fluid against an adverse osmotic gradient. Through the paracrine secretion of prostaglandins and growth factors (e.g., transforming growth factor-β), ISEMF may play a role in colonic tumorigenesis and metastasis. COX-2 in polyp ISEMF may be a target for nonsteroidal anti-inflammatory drugs (NSAIDs), which would account for the regression of the neoplasms in familial adenomatous polyposis and the preventive effect of NSAIDs in the development of sporadic colon neoplasms. More investigation is needed to clarify the functions of these pleiotropic cells.


2003 ◽  
Vol 12 (5) ◽  
pp. 509-518 ◽  
Author(s):  
Masaki Yazawa ◽  
Hisao Ogata ◽  
Tatsuo Nakajima ◽  
Taisuke Mori ◽  
Naohide Watanabe ◽  
...  

Platelets, which contain many growth factors such as platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β), are being used in clinical applications as platelet-rich plasma (PRP). Only a few studies, however, have been conducted on the growth factors present in PRP and on the clinical applications using the drug delivery system (DDS). For the purpose of clinical application, we first modified the PRP preparation method and assessed the amounts of growth factors contained in the human platelet concentrates. Furthermore, we assessed fibrin glue as a DDS of platelet concentrates. Platelet precipitations were made by twice centrifuging human whole blood. The precipitated platelet was resuspended to yield the platelet concentrates. The growth factor concentrations were measured. Fibrin glue sheets containing this platelet concentrate were implanted in rabbit pinna and samples were obtained for immunostaining (anti-PDGF antibody) to assess the use of PRP over time using the fibrin glue as the DDS. The mean concentration of growth factors present in the platelet concentrates was three times or greater than that of conventional PRP. Furthermore, the results indicated that when the platelet concentrate was used with fibrin glue as a carrier, the contents were released over a period of about 1 week. This raises the possibility that this system may be useful in clinical applications.


2001 ◽  
Vol 79 (7) ◽  
pp. 1171-1208 ◽  
Author(s):  
M C Thorndyke ◽  
MD Candia Carnevali

There has been much recent interest in the presence and biological functions of growth regulators in invertebrates. In spite of the different distribution patterns of these molecules in different phyla (from molluscs, insects, and annelids to echinoderms and tunicates), they seem always to be extensively involved in developmental processes, both embryonic and regenerative. Echinoderms are well known for their striking regenerative potential and many can completely regenerate arms that, for example, are lost following self-induced or traumatic amputation. Thus, they provide a valuable experimental model for the study of regenerative processes from the macroscopic to the molecular level. In crinoids as well as probably all ophiuroids, regeneration is rapid and occurs by means of a mechanism that involves blastema formation, known as epimorphosis, where the new tissues arise from undifferentiated cells. In asteroids, morphallaxis is the mechanism employed, replacement cells being derived from existing tissues following differentiation and (or) transdifferentiation. This paper focuses on the possible contribution of neurohormones and growth factors during both repair and regenerative processes. Three different classes of regulatory molecules are proposed as plausible candidates for growth-promoting factors in regeneration: neurotransmitters (monoamines), neuropeptides (substance P, SALMFamides 1 and 2), and growth-factor-like molecules (TGF-β (transforming growth factor β), NGF (nerve growth factor), RGF-2 (basic fibroblast growth factor)).


Endocrinology ◽  
1990 ◽  
Vol 126 (6) ◽  
pp. 3069-3075 ◽  
Author(s):  
R. O. C. OREFFO ◽  
L. BONEWALD ◽  
A. KUKITA ◽  
I. R. GARRETT ◽  
S. M. SEYEDIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document