scholarly journals Inseparable tandem: evolution chooses ATP and Ca 2+ to control life, death and cellular signalling

2016 ◽  
Vol 371 (1700) ◽  
pp. 20150419 ◽  
Author(s):  
Helmut Plattner ◽  
Alexei Verkhratsky

From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca 2+ to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca 2+ as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca 2+ as a universal signalling ion; similarly, Ca 2+ is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca 2+ started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca 2+ interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca 2+ low forced cells to restrict Ca 2+ signals in space and time and to develop energetically favourable Ca 2+ signalling and Ca 2+ microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca 2+ -regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca 2+ signalling. Similar to atmospheric oxygen, Ca 2+ must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca 2+ homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca 2+ and ATP have been exploited in evolution, thus turning an originally unholy alliance into a fascinating success story. This article is part of the themed issue ‘Evolution brings Ca 2+ and ATP together to control life and death’.

2006 ◽  
Vol 52 (3-4) ◽  
pp. 299-318 ◽  
Author(s):  
Eugene V. Koonin

It is proposed that the pre-cellular stage of biological evolution, including the Last Universal Common Ancestor (LUCA) of modern cellular life forms, occurred within networks of inorganic compartments that hosted a diverse mix of virus-like genetic elements. This viral model of cellular origin recapitulates the early ideas of J.B.S. Haldane, sketched in his 1928 essay on the origin of life. However, unlike in Haldane's day, there is substantial empirical support for this scenario from three major lines of evidence provided by comparative genomics: (i) the lack of homology among the core components of the DNA replication systems between the two primary lines of descent of cellular life forms, archaea and bacteria, (ii) the similar lack of homology between the enzymes of lipid biosynthesis in conjunction with distinct membrane chemistries in archaea and bacteria, and (iii) the spread of several viral hallmark genes, which encode proteins with key functions in viral replication and morphogenesis, among numerous and extremely diverse groups of viruses, in contrast to their absence in cellular life forms. Under the viral model of pre-cellular evolution, the key elements of cells including the replication apparatus, membranes, molecular complexes involved in membrane transport and translocation, and others originated as components of virus-like entities. This model alleviates, at least in part, the challenge of the emergence of the immensely complex organization of modern cells.


PEDIATRICS ◽  
1977 ◽  
Vol 59 (2) ◽  
pp. 204-204
Author(s):  
W. H. McNeill ◽  

It is not absurd to class the ecological role of humankind in its relationship to other life forms as a disease. Ever since language allowed human cultural evolution to impinge upon age-old processes of biological evolution, humankind has been in a position to upset older balances of nature in quite the same fashion that disease upsets the natural balance within a host's body. Time and again, a temporary approach to stabilization of new relationships ocurred as natural limits to the ravages of humankind upon other life forms manifested themselves. Yet sooner or later, and always within a span of time that remained minuscule in comparison with the standards of biological evolution, humanity discovered new techniques allowing fresh exploitation of hitherto inaccessible resources, thereby renewing or intensifying damage to other forms of life. Looked at from the point of view of other organisms, humankind therefore resembles an acute epidemic disease, whose occasional lapses into less virulent forms of behavior have never yet sufficed to permit any really stable, chronic relationship to establish itself.


2005 ◽  
Vol 69 (5) ◽  
pp. 621-641 ◽  
Author(s):  
H. C. W. Skinner

AbstractBiominerals are a subset of the mineral kingdom, those created by living creatures. In spite of usually fine grain size and intimate association with organic materials, biominerals are readily identified as common mineral species. Iron hydroxides and oxyhydroxides, calcium carbonates and calcium phosphates from uni- and multi-cellular species are presented as examples of biominerals, and biomineralization processes. Their special morphological, and crystal chemical, characteristics provide unique structural contributions to the life forms that create them. Investigations of novel habitats should present opportunities to expand the number of biominerals and their potential for industrial applications.


1996 ◽  
Vol 04 (02) ◽  
pp. 239-247
Author(s):  
G.P. GLADYSHEV ◽  
D.P. GLADYSHEV

The present paper deals with the experimental identification of previously postulated correlations linking the specific Gibbs function of the formation of supramolecular structures of living organisms with the chemical energy capacity or the relative thermodynamic stability of the substances involved in the self-assembly of these structures. The paper presents new results to further corroborate the macrothermodynamic model of the evolution of biological systems as applied to phylogenesis, ontogenesis as well as the extended periods of the general evolution of life forms.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Julien Alleon ◽  
Sylvain Bernard ◽  
Nicolas Olivier ◽  
Christophe Thomazo ◽  
Johanna Marin-Carbonne

AbstractArchean rocks contain crucial information about the earliest life forms on Earth, but documenting these early stages of biological evolution remains challenging. The main issue lies in the geochemical transformations experienced by Archean organic matter through its multi-billion-year geological history. Here we present spatially resolved chemical investigations conducted on 3.4 Ga organic films from the Buck Reef Chert, South Africa which indicate that they possess significantly different chemical compositions. Since these organic films all underwent the same post-depositional geological history, this geochemical diversity is most likely inherited, reflecting original chemical differences which were not completely obliterated by subsequent burial-induced degradation processes. These results demonstrate that early Archean organic films carry chemical information directly related to their original molecular compositions. This paves the way for the reconstruction of the initial chemical nature of organic microfossils found in ancient rocks, provided that the geologically-induced chemical transformations they underwent are properly constrained.


2009 ◽  
Vol 81 (10) ◽  
pp. 1843-1855 ◽  
Author(s):  
Lee D. Hansen ◽  
Richard S. Criddle ◽  
Edwin H. Battley

Calorimetric measurements on biological systems from small molecules to whole organisms lead to a new conception of the nature of live matter that has profound consequences for our understanding of biology. The data show that the differences in Gibbs energy (ΔG) and enthalpy (ΔH) are near zero or negative and the difference in entropy (ΔS) is near zero between a random mixture of molecules and live matter of the same composition. A constant input of energy is required to maintain ion gradients, ATP production, and the other functions of living matter, but because cells are organized in a spontaneous process, no energy input is required to maintain the structure or organization of cells. Thus, the origin of life and evolution of complex life forms occurs by thermodynamically spontaneous processes, carbon-based life should be common throughout the universe, and because there is no energy cost, evolution can occur relatively rapidly.


2016 ◽  
Vol 113 (7) ◽  
pp. 1731-1736 ◽  
Author(s):  
Shuichang Zhang ◽  
Xiaomei Wang ◽  
Huajian Wang ◽  
Christian J. Bjerrum ◽  
Emma U. Hammarlund ◽  
...  

The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves.


Author(s):  
Anthony McMichael

Details Blur As We peer back through millions of years, but the outline of the story is clear enough. During the past 2– 3 million years, our hominin forebears had to cope with an increasingly vari­able and cooling climate. Across those 100,000 Homo generations, survival and reproduction depended on maintaining biological and behavioral compatibility with constantly changing climatic and environmental conditions. Hence much of modern human biological versatility and adaptability, including several unique as­pects of brain function, comes from evolution’s selective winnowing within those ancient predecessor populations. The genes of the survi­vors, those best able to reproduce, are part of our genetic inheritance today. That climate change has been a major source of natural selec­tive pressure has long been known. Alfred Russel Wallace, the over­shadowed younger contemporary of Charles Darwin and codis­coverer of evolution by natural selection, wrote that, among the variations occurring in every fresh generation, survival of the fittest occurred in response to the “changes of climate, of food, of en­emies always in progress.” The corollary, of course, is that since biological evolution must focus on surviving the present, oblivious of the future, it provides no guarantee against extinction. Even so, a multivalent brain that enables cultural and behavioral adaptability and strategic forward thinking would surely help an animal spe­cies cope better with subsequent environmental changes. Indeed, it seems to have worked sufficiently well for our Homo genus an­cestors during two million years of ever- changing climatic condi­tions for at least one Homo species to have carried the baton of survival into the present. In the next two centuries, our species faces a new challenge of greater, faster, and protracted climate change. Since the Cambrian Explosion of new life forms around 540 million years ago, there have been five great natural extinctions and many lesser ones. The earliest extinction of multicellular life, though less destructive than its successors, occurred around 510 million years ago, apparently due to acute sulfurous shrouding, cooling, and oxygen deprivation caused by a massive volcanic eruption in northwest Australia. Most of these catastrophic transitions were marked by climate extremes, volcanic activity, and altered ocean chemistry, especially rapid surface acidification of shallow coastal waters.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247806
Author(s):  
Steven Russum ◽  
Katie Jing Kay Lam ◽  
Nicholas Alan Wong ◽  
Vasu Iddamsetty ◽  
Kevin J. Hendargo ◽  
...  

Upon discovery of the first archaeal species in the 1970s, life has been subdivided into three domains: Eukarya, Archaea, and Bacteria. However, the organization of the three-domain tree of life has been challenged following the discovery of archaeal lineages such as the TACK and Asgard superphyla. The Asgard Superphylum has emerged as the closest archaeal ancestor to eukaryotes, potentially improving our understanding of the evolution of life forms. We characterized the transportomes and their substrates within four metagenome-assembled genomes (MAGs), that is, Odin-, Thor-, Heimdall- and Loki-archaeota as well as the fully sequenced genome of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 that belongs to the Loki phylum. Using the Transporter Classification Database (TCDB) as reference, candidate transporters encoded within the proteomes were identified based on sequence similarity, alignment coverage, compatibility of hydropathy profiles, TMS topologies and shared domains. Identified transport systems were compared within the Asgard superphylum as well as within dissimilar eukaryotic, archaeal and bacterial organisms. From these analyses, we infer that Asgard organisms rely mostly on the transport of substrates driven by the proton motive force (pmf), the proton electrochemical gradient which then can be used for ATP production and to drive the activities of secondary carriers. The results indicate that Asgard archaea depend heavily on the uptake of organic molecules such as lipid precursors, amino acids and their derivatives, and sugars and their derivatives. Overall, the majority of the transporters identified are more similar to prokaryotic transporters than eukaryotic systems although several instances of the reverse were documented. Taken together, the results support the previous suggestions that the Asgard superphylum includes organisms that are largely mixotrophic and anaerobic but more clearly define their metabolic potential while providing evidence regarding their relatedness to eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document