scholarly journals Nature-based approaches to managing climate change impacts in cities

2020 ◽  
Vol 375 (1794) ◽  
pp. 20190124 ◽  
Author(s):  
Sarah E. Hobbie ◽  
Nancy B. Grimm

Managing and adapting to climate change in urban areas will become increasingly important as urban populations grow, especially because unique features of cities amplify climate change impacts. High impervious cover exacerbates impacts of climate warming through urban heat island effects and of heavy rainfall by magnifying runoff and flooding. Concentration of human settlements along rivers and coastal zones increases exposure of people and infrastructure to climate change hazards, often disproportionately affecting those who are least prepared. Nature-based strategies (NBS), which use living organisms, soils and sediments, and/or landscape features to reduce climate change hazards, hold promise as being more flexible, multi-functional and adaptable to an uncertain and non-stationary climate future than traditional approaches. Nevertheless, future research should address the effectiveness of NBS for reducing climate change impacts and whether they can be implemented at scales appropriate to climate change hazards and impacts. Further, there is a need for accurate and comprehensive cost–benefit analyses that consider disservices and co-benefits, relative to grey alternatives, and how costs and benefits are distributed across different communities. NBS are most likely to be effective and fair when they match the scale of the challenge, are implemented with input from diverse voices and are appropriate to specific social, cultural, ecological and technological contexts. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.

2020 ◽  
Vol 12 (9) ◽  
pp. 3697 ◽  
Author(s):  
Valentina Gallina ◽  
Silvia Torresan ◽  
Alex Zabeo ◽  
Andrea Critto ◽  
Thomas Glade ◽  
...  

Climate change threatens coastal areas, posing significant risks to natural and human systems, including coastal erosion and inundation. This paper presents a multi-risk approach integrating multiple climate-related hazards and exposure and vulnerability factors across different spatial units and temporal scales. The multi-hazard assessment employs an influence matrix to analyze the relationships among hazards (sea-level rise, coastal erosion, and storm surge) and their disjoint probability. The multi-vulnerability considers the susceptibility of the exposed receptors (wetlands, beaches, and urban areas) to different hazards based on multiple indicators (dunes, shoreline evolution, and urbanization rate). The methodology was applied in the North Adriatic coast, producing a ranking of multi-hazard risks by means of GIS maps and statistics. The results highlight that the higher multi-hazard score (meaning presence of all investigated hazards) is near the coastline while multi-vulnerability is relatively high in the whole case study, especially for beaches, wetlands, protected areas, and river mouths. The overall multi-risk score presents a trend similar to multi-hazard and shows that beaches is the receptor most affected by multiple risks (60% of surface in the higher multi-risk classes). Risk statistics were developed for coastal municipalities and local stakeholders to support the setting of adaptation priorities and coastal zone management plans.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 726
Author(s):  
Paul Carroll ◽  
Eeva Aarrevaara

Future climate conditions need to be considered in planning for urban areas. As well as considering how new structures would best endure in the future, it is important to take into account factors that contribute to the degradation of cultural heritage buildings in the urban setting. Climate change can cause an increase in structural degradation. In this paper, a review of both what these factors are and how they are addressed by urban planners is presented. A series of inquiries into the topic was carried out on town planning personnel and those involved in cultural heritage preservation in several towns and cities in Finland and in a small number of other European countries. The target group members were asked about observed climate change impacts on cultural heritage, about present steps being taken to protect urban cultural heritage, and also their views were obtained on how climate change impacts will be emphasised in the future in this regard. The results of the inquiry demonstrate that climate change is still considered only in a limited way in urban planning, and more interaction between different bodies, both planning and heritage authorities, as well as current research on climate change impacts, is needed in the field.


Author(s):  
Wilfrid Greaves

This article examines the implications of human-caused climate change for security in Canada. The first section outlines the current state of climate change, the second discusses climate change impacts on human security in Canada, and the third outlines four other areas of Canada’s national interests threatened by climate change: economic threats; Arctic threats; humanitarian crises at home and abroad; and the threat of domestic conflict. In the conclusion, I argue that climate change has clearly not been successfully “securitized” in Canada, despite the material threats it poses to human and national security, and outline directions for future research.


2018 ◽  
Vol 163 ◽  
pp. 171-185 ◽  
Author(s):  
Ying Li ◽  
Ting Ren ◽  
Patrick L. Kinney ◽  
Andrew Joyner ◽  
Wei Zhang

2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


2018 ◽  
Vol 26 (1) ◽  
pp. 82-92 ◽  
Author(s):  
James D. Ford ◽  
Nicole Couture ◽  
Trevor Bell ◽  
Dylan G. Clark

This paper identifies and characterizes current knowledge on climate change impacts, adaptation, and vulnerability for Canada’s northern coastline, outlining key research gaps. Warming temperatures and increased precipitation have been documented across the northern coast, with the rate of sea ice decline ranging from 2.9% to 10.4% per decade. Storm intensity and frequency is increasing, and permafrost is warming across the region. Many of these changes are projected to accelerate in the future, with in excess of 8 °C warming in winter possible under a high-emission scenario by 2081–2100. Vulnerability to these changes differs by region and community, a function of geographic location, nature of climate change impacts, and human factors. Capacity to manage climate change is high in some sectors, such as subsistence harvesting, but is being undermined by long-term societal changes. In other sectors, such as infrastructure and transportation, limitations in climate risk management capacity result in continuing high vulnerabilities. There is evidence that adaptation is taking place in response to experienced and projected impacts, although readiness for adaptation is challenged by limited resources, institutional capacity, and a need for support for adaptation across levels of government. Priority areas for future research include (i) expanding the sectoral and geographic focus of understanding on climate change impacts, adaptation, and vulnerability; (ii) integrating climatic and socio-economic projections into vulnerability and adaptation assessments; (iii) developing an evidence base on adaptation options; and (iv) monitoring and evaluating the effectiveness of adaptation support. Cross-cutting themes for advancing climate change impacts, adaptation, and vulnerability research on the north coast more broadly include the need for greater emphasis on interdisciplinary approaches and cross-cultural collaborations, support for decision-orientated research, and focus on effective knowledge mobilization.


2011 ◽  
Vol 51 (2) ◽  
pp. 687
Author(s):  
Michael Nolan

This paper explores the lessons learnt from the Optimising Adaptation Investment projects for the Department of Climate Change and Energy Efficiency–it includes coastal settlements, water supply and rail infrastructure case studies. These projects are the first of their kind in Australia and are considered internationally as a leading example of economic cost benefit analysis. They have been used effectively to inform decision making on specific adaptation responses to climate change risks to existing and new infrastructure. The lessons learnt will be explored for offshore platforms, ports, rail, road, drainage, tailings dams, mine facilities, water, and power supply, which includes the following elements: What decision makers require to make informed decisions under the uncertainty of climate change impacts. Reducing the uncertainty through economic modelling and cost benefit analysis. Optimising the right timing and scale of various adaptation options. Benefiting from oil and gas infrastructure adaptation opportunities. To further support the elements above, the applied process for integrating climate adaptation into infrastructure planning, design and operation will be illustrated by AECOM project experiences. AECOM has completed more than 60 significant climate change risk and adaptation projects for mines, ports, water supply and treatment, energy generation, transmission and distribution, rail, road, and coastal settlements in Australia, including the report: Climate Change Impacts to Infrastructure in Australia for the Garnaut Climate Change Review.


Sign in / Sign up

Export Citation Format

Share Document