scholarly journals Human odour thresholds are tuned to atmospheric chemical lifetimes

2020 ◽  
Vol 375 (1800) ◽  
pp. 20190274 ◽  
Author(s):  
Jonathan Williams ◽  
Akima Ringsdorf

In this study, the odour thresholds (OT) and atmospheric lifetimes (AL) were compared for a suite of volatile organic compounds. It was found that odour threshold, as determined by the triangle bag method, correlated surprisingly well with atmospheric lifetime for a given chemical family. Molecules with short atmospheric lifetimes with respect to the primary atmospheric oxidant OH tend to be more sensitively detected by the human nose. Overall the correlation of odour threshold with atmospheric lifetime was better than with mass and vapour pressure. Several outliers from the correlations for particular chemical families were examined in detail. For example, diacetyl was an outlier in the ketone dataset that fitted the trend when its more important photolysis lifetime was included; and similarly, the relatively low odour threshold of carbonyl sulfide (OCS) was interpreted in terms of uptake by vegetation. The OT/AL relationship suggests that OH rate constants can be used as a first-order estimate for odour thresholds (and vice versa ). We speculate that the nose's high sensitivity to chemicals that are reactive in the air is likely an evolved rather than a learned condition. This is based on the lack of dependence on ozone in the aliphatics, that the anthropogenically emitted aromatic compounds had the worst correlation, and that OCS had a much lower than predicted OT. Finally, we use the OT/AL relationships derived to predict odour thresholds and rate constants that have not yet been determined in order to provide a test to this hypothesis. This article is part of the Theo Murphy meeting issue ‘Olfactory communication in humans’.

2021 ◽  
Vol 22 (14) ◽  
pp. 7394
Author(s):  
Kyoung Ho Park ◽  
Mi Hye Seong ◽  
Jin Burm Kyong ◽  
Dennis N. Kevill

A study was carried out on the solvolysis of 1-adamantyl chlorothioformate (1-AdSCOCl, 1) in hydroxylic solvents. The rate constants of the solvolysis of 1 were well correlated using the Grunwald–Winstein equation in all of the 20 solvents (R = 0.985). The solvolyses of 1 were analyzed as the following two competing reactions: the solvolysis ionization pathway through the intermediate (1-AdSCO)+ (carboxylium ion) stabilized by the loss of chloride ions due to nucleophilic solvation and the solvolysis–decomposition pathway through the intermediate 1-Ad+Cl− ion pairs (carbocation) with the loss of carbonyl sulfide. In addition, the rate constants (kexp) for the solvolysis of 1 were separated into k1-Ad+Cl− and k1-AdSCO+Cl− through a product study and applied to the Grunwald–Winstein equation to obtain the sensitivity (m-value) to change in solvent ionizing power. For binary hydroxylic solvents, the selectivities (S) for the formation of solvolysis products were very similar to those of the 1-adamantyl derivatives discussed previously. The kinetic solvent isotope effects (KSIEs), salt effects and activation parameters for the solvolyses of 1 were also determined. These observations are compared with those previously reported for the solvolyses of 1-adamantyl chloroformate (1-AdOCOCl, 2). The reasons for change in reaction channels are discussed in terms of the gas-phase stabilities of acylium ions calculated using Gaussian 03.


2021 ◽  
Vol 368 (6) ◽  
Author(s):  
Liwen Zhang ◽  
Qingyu Lv ◽  
Yuling Zheng ◽  
Xuan Chen ◽  
Decong Kong ◽  
...  

ABSTRACT T-2 is a common mycotoxin contaminating cereal crops. Chronic consumption of food contaminated with T-2 toxin can lead to death, so simple and accurate detection methods in food and feed are necessary. In this paper, we establish a highly sensitive and accurate method for detecting T-2 toxin using AlphaLISA. The system consists of acceptor beads labeled with T-2-bovine serum albumin (BSA), streptavidin-labeled donor beads and biotinylated T-2 antibodies. T-2 in the sample matrix competes with T-2-BSA for antibodies. Adding biotinylated antibodies to the test well followed by T-2 and T-2-BSA acceptor beads yielded a detection range of 0.03–500 ng/mL. The half-maximal inhibitory concentration was 2.28 ng/mL and the coefficient of variation was <10%. In addition, this method had no cross-reaction with other related mycotoxins. This optimized method for extracting T-2 from food and feed samples achieved a recovery rate of approximately 90% in T-2 concentrations as low as 1 ng/mL, better than the performance of a commercial ELISA kit. This competitive AlphaLISA method offers high sensitivity, good specificity, good repeatability and simple operation for detecting T-2 toxin in food and feed.


2012 ◽  
Vol 90 (4) ◽  
pp. 353-361 ◽  
Author(s):  
Xiaomin Sun ◽  
Chenxi Zhang ◽  
Yuyang Zhao ◽  
Jing Bai ◽  
Maoxia He

In the atmosphere, linalool ozonolysis will generate a series of oxidation products and then form particles through nucleation. In this study, the linalool ozonolysis mechanisms were studied and some of the main products detected from experiment are verified. The Rice–Ramsperger–Kassel–Marcus (RRKM) theory and the canonical variational transition state theory (CVT) with small curvature tunneling effect (SCT) are used to calculate rate constants over the temperature range of 200∼800 K. The total rate constant for the reaction of ozone with linalool is 4.50 × 10−16 cm3 molecule–l s–l, and the addition of ozone to (CH3)2C=CH– is the main ozone addition position. Furthermore, the Arrhenius formulas are fitted and the lifetimes of reaction species in the troposphere are discussed for the first time. The total atmospheric lifetime of linalool relative to O3 is 2.30 h. The O3-initiated atmospheric lifetimes of P1, P3, and P6 are 2.64 months, 16.67 days, and 15.5 h, respectively.


Biomedicines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 57 ◽  
Author(s):  
Minju Kim ◽  
Kandhasamy Sowndhararajan ◽  
Hae Jin Choi ◽  
Se Jin Park ◽  
Songmun Kim

Fragrances play a pivotal role in humans’ psychological and physiological functions through the olfactory system. Aldehydes are important organic compounds with a variety of fragrance notes. Particularly, nonanal (C9) and decanal (C10) aldehydes are important natural fragrant components used to enhance floral, as well as citrus notes in perfumery products. In general, each nostril of the human nose is tuned to smell certain odor molecules better than others due to slight turbinate swelling between the nostrils. Hence, the objective of the present investigation was aimed to evaluate the influence of binasal and uninasal inhalations of C9 and C10 aldehydes on human electroencephalographic (EEG) activity. Twenty healthy participants (10 males and 10 females) participated in this study. The EEG readings were recorded from 8 electrodes (QEEG-8 system) according to the International 10-20 System. The results revealed that C10 exposure exhibited significantly different EEG changes, during binasal and uninasal inhalations. In different brain regions, C10 odor markedly decreased the absolute alpha and absolute beta power spectra. In regards to C9 odor, significant changes of EEG power spectra were noticed only during binasal inhalation. In addition, C10 mainly produced changes at the left parietal site (P3) than other brain sites. In conclusion, the variations in EEG activities of C9 and C10 aldehydes might be owing to their characteristic fragrance quality, as well as the influence of nostril differences.


2020 ◽  
Vol 77 (4) ◽  
pp. 1417-1430
Author(s):  
Gallen Triana-Baltzer ◽  
Kristof Van Kolen ◽  
Clara Theunis ◽  
Setareh Moughadam ◽  
Randy Slemmon ◽  
...  

Background: Early and accurate detection and staging is critical to managing Alzheimer’s disease (AD) and supporting clinical trials. Cerebrospinal fluid (CSF) biomarkers for amyloid-β peptides, tau species, and various neurodegenerative and inflammatory analytes are leading the way in this regard, yet there is room for improved sensitivity and specificity. In particular tau is known to be present in many different fragments, conformations, and post-translationally modified forms. While the exact tau species that might best reflect AD pathology is unknown, a growing body of evidence suggests that forms with high levels of phosphorylation in the mid-region may be especially enriched in AD. Objective: Develop an assay for measuring p217tau in CSF. Methods: Here we describe the development and validation of a novel sELISA for measuring CSF tau species containing phosphorylation at threonines 212 & 217, aka p217 + tau, using the PT3 antibody. Results: While the analyte is present at extremely low levels the assay is sufficiently sensitive and specific to quantitate p217 + tau with excellent precision, accuracy, and dilution linearity, allowing good differentiation between diagnostic subgroups. The p217 + tau measurements appear to track AD pathology better than the commonly used p181tau epitope, suggesting superior diagnostic and staging performance. Finally, the assay can also be configured to differentiate antibody-bound versus antibody-free tau, and therefore can be used to measure target engagement by p217 + tau-targeting immunotherapeutics. Conclusion: The assay for measuring p217 + tau described here is highly sensitive, accurate, precise, dilution linear, and shows good potential for identifying and staging AD.


2013 ◽  
Vol 6 (1) ◽  
pp. 795-823 ◽  
Author(s):  
X.-F. Wen ◽  
Y. Meng ◽  
X.-Y. Zhang ◽  
X.-M. Sun ◽  
X. Lee

Abstract. Isotope ratio infrared spectroscopy (IRIS) provides an in-situ technique for measuring δ13C in atmospheric CO2. A number of methods have been proposed for calibrating the IRIS measurements, but few studies have systematically evaluated their accuracy for atmospheric applications. In this study, we carried out laboratory and ambient measurements with two commercial IRIS analyzers and compared the accuracy of four calibration strategies. We found that calibration based on the 12C and 13C mixing ratios (Bowling et al., 2003) and that based on linear interpolation of the measured delta using the mixing ratio of the major isotopologue (Lee et al., 2005) yielded accuracy better than 0.06‰. Over a 7-day atmospheric measurement in Beijing, the two analyzers differed by 9.44 ± 1.65‰ (mean ± 1 standard deviation of hourly values) before calibration and agreed to within −0.02 ± 0.18‰ after properly calibration. However, even after calibration the difference between the two analyzers showed a slight correlation with concentration, and this concentration dependence propagated through the Keeling analysis resulting in a much larger difference of 2.44‰ for the Keeling intercept. The high sensitivity of the Keeling analysis to the concentration dependence underscores the challenge of IRIS for atmospheric research.


2016 ◽  
Vol 40 (7) ◽  
pp. 6148-6155 ◽  
Author(s):  
Bhupesh Kumar Mishra ◽  
Makroni Lily ◽  
Ramesh Chandra Deka ◽  
Asit K. Chandra

The calculated rate constants for C4F9OCH3 + OH/Cl reactions are found to be 1.94 × 10−14 and 1.74 × 10−12 cm3 molecule−1 s−1, respectively, at 298 K. The atmospheric lifetime and global warming potential for HFE-7100 are computed to be 2.12 years and 155.3, respectively.


2002 ◽  
Vol 39 ◽  
pp. 328
Author(s):  
Brent P. Davis ◽  
Joseph B. Muhlestein ◽  
John F. Carlquist ◽  
Jason M. Lappe' ◽  
Benjamin D. Home ◽  
...  

Geophysics ◽  
1948 ◽  
Vol 13 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Eugene Frowe

A magnetometer which measures the earth’s total magnetic field is described. The detector or measuring element of the magnetometer contains three mutually perpendicular elements, two of which are utilized to orient the third, which in turn operates a recording device to record the total magnetic field. The detector elements are of the inductive type and do not require ferromagnetic material to give them the high sensitivity required in geophysical work. The presence of a magnetic field in the region of the detector causes alternating currents to be generated in the detector elements. These currents are amplified to actuate motors which control the orienting and neutralizing functions of the magnetometer. A tape recorder gives continuous field readings. The accuracy of the magnetic data taken is better than five gammas.


Sign in / Sign up

Export Citation Format

Share Document