scholarly journals Earth as construction material in the circular economy context: practitioner perspectives on barriers to overcome

2021 ◽  
Vol 376 (1834) ◽  
pp. 20200182 ◽  
Author(s):  
Jean-Claude Morel ◽  
Rabia Charef ◽  
Erwan Hamard ◽  
Antonin Fabbri ◽  
Chris Beckett ◽  
...  

The need for a vast quantity of new buildings to address the increase in population and living standards is opposed to the need for tackling global warming and the decline in biodiversity. To overcome this twofold challenge, there is a need to move towards a more circular economy by widely using a combination of alternative low-carbon construction materials, alternative technologies and practices. Soils or earth were widely used by builders before World War II, as a primary resource to manufacture materials and structures of vernacular architecture. Centuries of empirical practices have led to a variety of techniques to implement earth, known as rammed earth, cob and adobe masonry among others. Earth refers to local soil with a variable composition but at least containing a small percentage of clay that would simply solidify by drying without any baking. This paper discusses why and how earth naturally embeds high-tech properties for sustainable construction. Then the potential of earth to contribute to addressing the global challenge of modern architecture and the need to re-think building practices is also explored. The current obstacles against the development of earthen architecture are examined through a survey of current earth building practitioners in Western Europe. A literature review revealed that, surprisingly, only technical barriers are being addressed by the scientific community; two-thirds of the actual barriers identified by the interviewees are not within the technical field and are almost entirely neglected in the scientific literature, which may explain why earthen architecture is still a niche market despite embodying all the attributes of the best construction material to tackle the current climate and economic crisis. This article is part of the theme issue ‘The role of soils in delivering Nature's Contributions to People’.

2019 ◽  
Vol 5 (12) ◽  
pp. 2587-2597
Author(s):  
Sajid Kamil Zemam ◽  
Sa'ad Fahad Resan ◽  
Musab Sabah Abed

Construction materials made of renewable resources have promising potential given their low cost, availability, and environmental friendliness. Although hemp fibers are the most extensively used fiber in the eco-friendly building sector, their unavailability hinders their application in Iraq. This study aimed to overcome the absence of hemp fiber in Iraq and develop a new sustainable construction material, strawcrete, by using wheat straw and traditional lime as the base binder. A comparable method of developing hempcrete was established. The experimental program adopted novel Mixing Sequence Techniques (MSTs), which depended on changing the sequence of mixed material with fixed proportions. The orientation of the applied load and the specimen’s aspect ratio were also studied. The mixing proportion was 4:1:1 (fiber/binder/water) by volume. Results showed that the developed strawcrete had a dry unit weight ranging from 645 kg/m3 to 734 kg/m3 and a compressive strength ranging from 1.8 MPa to 3.8 MPa. The enhanced physical and strength properties varied with the MST and loading orientation. The properties of the developed hempcrete were compared with those of strawcrete.


2021 ◽  
Vol 14 (1) ◽  
pp. 328
Author(s):  
Marwa Dabaieh ◽  
Dalya Maguid ◽  
Deena El-Mahdy

The mounting climate change crisis and the rapid urbanization of cities have pressured many practitioners, policymakers, and even private investors to develop new policies, processes, and methods for achieving more sustainable construction methods. Buildings are considered to be among the main contributors to harmful environmental impacts, resource consumption, and waste generation. The concept of a circular economy (CE), also referred to as “circularity”, has gained a great deal of popularity in recent years. CE, in the context of the building industry, is based on the concept of sustainable construction, which calls for reducing negative environmental impacts while providing a healthier indoor environment and closing material loops. Both vernacular architecture design strategies and circular economy principles share many of the same core concepts. This paper aims at investigating circular economy principles in relation to vernacular architecture principles in the built environment. The study demonstrates how circular principles can be achieved through the use of vernacular construction techniques and using local building materials. This paper will focus on Egypt as one of the oldest civilizations in the world, with a wide vernacular heritage, exploring how circularity is rooted in old vernacular settlements and how it can inspire contemporary circular practices.


2014 ◽  
Vol 510 ◽  
pp. 51-56 ◽  
Author(s):  
Ji Hye Choi ◽  
Yoon Sun Lee ◽  
Hyun Suk Jang ◽  
Jeong Seok Lee ◽  
Jae Jun Kim

A building is a structure constructed using various methods. An enormous amount of resources and energy is invested in the construction of buildings. In order to reduce the energy spent and the environmental load incurred by the construction of buildings, it is necessary to first reduce the energy spent in and the environmental load of each material involved in the construction of buildings. To achieve low carbon greenhouse gas emissions and energy goals, locally as well as internationally, both public and private sectors have focused on improving the environmental impact of products. This paper discusses the low carbon activities of the construction material industry. Here, we investigate the trend of each country in policy support and technological innovation for realizing low carbon activities. We also analyze the carbon dioxide emissions of certified carbon labeled construction materials. Because the process of producing construction materials makes it difficult to reduce the generation of carbon, only 68 items of a total of 962 items were certified as carbon labeled materials. However, leading material manufacturers are ready to recognize certified carbon labeling as an important process in order to gain the customer's trust and play a leading role.


2019 ◽  
Vol 8 (3) ◽  
pp. 1898-1901

Cement concrete is a most used construction material, due to its enormous demand worldwide in the construction sector. Concrete serves many purposes in different adverse conditions, there are many advantages but there is one limitation that is concrete is not flexible. Concrete Canvas brought a revolutionary change in the construction materials called Geosynthetic Cementitious Composite Mats (GCCMs) which as many applications and used as an alternative to conventional concrete. It is a flexible, concrete canvas that gets hardens on hydration to form a thin, durable, waterproof and low-carbon concrete layer. Concrete Canvas may find its tremendous scope in the Construction sector as fire resistance and water proofing material. The concrete canvas has a self healing property thereby adds good benefit to the life of material and economically because of its zero percent repairs maintenance. Even though if the concrete canvas gets damaged after a period of time, it gets self healed with the contact of water which helps in the hydration process. This paper mainly focuses on the case study done on the applicability of concrete canvas for fire resistant, Water proof and bulletproofing with the help of AP State Police and to explore different applications in Construction sector as well as Defense sector.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-7
Author(s):  
Juliana De Carvalho Izidoro ◽  
Denise Alves Fungaro ◽  
Luciana Cristina Viviani ◽  
Rogério Da Costa Silva

Brine sludge (BS) is an industrial waste generated in large amounts by the Chlor-alkali industry and, usually disposed into industrial landfills. Because BS contains several chemical compounds, also presents a potential environmental impact. The feasibility of the utilization of brine sludge wastes for the preparation of value-added materials was investigated. The characterization of two brine sludge samples was performed in terms of chemical and physical composition, particle size distribution, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and thermal analysis (DTA/TG). Elements like Ca, Si, Na, Mg, Al, Cl, and Fe were identified in the samples. The XRD results confirmed the crystalline nature of compounds and indicated that the main compounds in brine sludge samples were calcium carbonate, sodium chloride, magnesium hydroxide, and quartz. FTIR showed the presence of varying functional groups like carbonate, siloxane, and hydroxide. The two brine sludge samples can be considered as a fine powder with the mean diameter (d50) of 4.984 µm and 24.574 µm, for the BS from Santo André and Cubatão, respectively. The results indicated that the brine sludge samples presented favorable characteristics to use limestone filler and binder alternative to Portland cement in the nonstructural construction materials. The incorporation of brine sludge in geopolymeric materials is another possible use in sustainable construction material products. The production of value-added products from brine sludge will be an important contribution towards sustainable development adopted by the Chlor-alkali industry.


2021 ◽  
Vol 13 (1) ◽  
pp. 119-124
Author(s):  
Madan Chandra Maurya ◽  
Dinesh Kumar Malviya

Construction and demolition (C&D) wastes are generated with construction or demolition activities and consists of non biodegradable materials such as cement concrete, bricks, plaster, steel, rubble, woods, plastics etc. Large use of natural recourses for the production of construction materials such as concrete is a prime concern for sustainability. In order to minimize the environmental impacts in terms of energy consumption, pollution, waste disposal and global warming construction industries has started to look for new alternative sources which are capable of substituting the use of natural materials, also some attempts were taken to utilize the waste generated from the demolition of structures and construction activity. The main benefits from the recycling of C&D waste are conservation of natural resources, reduction in energy consumption, solution for waste disposal crisis, environment preservation. Its use reduces reliance on primary aggregates and lowers the environmental impact of construction.  


Author(s):  
Laura Platace ◽  
Sandra Gusta

Abstract One of the most important parameters that is currently used in public and private procurement in building process is the lowest price. The legislation of Latvia permits that an estimate forming process does not include criterions of quality, durability, and the potential high cost of maintaining the building during the exploitation time. That allows the constructor to reduce the cost estimate by using cheaper construction product or technology and does not let to provide the highest possible quality and the basic principle of sustainable construction. One of possible construction cost reduction solutions is the replacement of building material with equal building material, at the same time assessing the quality and replacement impact on the direct costs of estimate. The tasks of the research are: (1) to do literature review on what is an estimate, what an estimate includes and the basis of estimate; (2) to analyse the existing construction estimate, to evaluate the used construction materials and to study technical characteristics of materials, to explore a specific construction junction; (3) to replace the selected construction materials with analogous, thus reducing the direct costs of estimate; (4) to evaluate the affect of the price of the construction material on quality; (5) to compare the obtained cost estimate with the current cost estimate; (6) to implement laboratory research and to compare technical characteristics of the construction materials and analogue materials in order to check if they are the performing parameters that are defined in the declaration of performance. After comparing of the obtained direct costs of construction and analysing the quality of construction materials it is possible to provide the most appropriate offer of the direct costs of estimate to satisfy the customer’s interests.


2011 ◽  
Vol 281 ◽  
pp. 258-262
Author(s):  
Jian Zhou

This paper starts from the concept of low-carbon building, aiming at the high carbon dioxide emissions in Chinese construction industry; by way of surveys and researches, it discusses the scientificity of the shape, the construction materials, and construction mode of traditional vernacular architecture. Combining current advanced technology of low carbon emissions, this paper studies the main methods for villages and towns to start low carbon architectural design in the future.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yi Lu ◽  
Meirong Su ◽  
Gengyuan Liu ◽  
Bin Chen ◽  
Shiyi Zhou ◽  
...  

Industrial sector is one of the indispensable contributors in global warming. Even if the occurrence of ecoindustrial parks (EIPs) seems to be a good improvement in saving ecological crises, there is still a lack of definitional clarity and in-depth researches on low-carbon industrial parks. In order to reveal the processes of carbon metabolism in a low-carbon high-tech industrial park, we selected Beijing Development Area (BDA) International Business Park in Beijing, China as case study, establishing a seven-compartment- model low-carbon metabolic network based on the methodology of Ecological Network Analysis (ENA). Integrating the Network Utility Analysis (NUA), Network Control Analysis (NCA), and system-wide indicators, we compartmentalized system sectors into ecological structure and analyzed dependence and control degree based on carbon metabolism. The results suggest that indirect flows reveal more mutuality and exploitation relation between system compartments and they are prone to positive sides for the stability of the whole system. The ecological structure develops well as an approximate pyramidal structure, and the carbon metabolism of BDA proves self-mutualistic and sustainable. Construction and waste management were found to be two active sectors impacting carbon metabolism, which was mainly regulated by internal and external environment.


2021 ◽  
Author(s):  
Paalo Moreno ◽  
Nicole Villamizar ◽  
Jefferson Perez ◽  
Angelica Bayona ◽  
Jesús Roman ◽  
...  

Abstract Housing construction consumes more materials than any other economic activity, with a total of 40.6 Gt/year. Boards are placed between construction materials to serve as non-load-bearing partitions. Studies have been performed to find alternatives to conventional materials using recycled fibers, agro-industrial waste, and protein binders as raw materials. Here, fire-resistant cellulose boards with low density and adequate flexural strength were produced for use as non-load-bearing partitions using waste newspapers, soy protein, boric acid, and borax. A central composite design (CCD) was employed to study the influence of the board component percentage on flame retardancy (UL 94 horizontal burning test), density (ASTM D1037-12) and flexural strength (ISO 178–2010). The cellulose boards were characterized by thermal analysis (ASTM E1131-14) and scanning electron microscopy. Fire-resistant cellulose boards were successfully made with low densities (120–170 kg/m3) and flexural strength (0.06–0.64 MPa). The mechanical performance and fire resistance of cellulose boards suggest their suitability for use as building materials. A useful and sustainable construction material with great potential is produced with the valorization of waste materials.


Sign in / Sign up

Export Citation Format

Share Document