Paucimyces polynucleatus gen. nov, sp. nov., a novel polycentric genus of anaerobic gut fungi from the faeces of a wild blackbuck antelope

Author(s):  
Radwa A. Hanafy ◽  
Noha H. Youssef ◽  
Mostafa S. Elshahed

The anaerobic gut fungi (AGF; phylum Neocallimastigomycota) reside in the alimentary tracts of herbivores. Multiple novel, yet-uncultured AGF taxa have recently been identified in culture-independent diversity surveys. Here, we report on the isolation and characterization of the first representative of the RH5 lineage from faecal samples of a wild blackbuck (Indian Antelope, Antilope cervicapra) from Sutton County, Texas, USA. The isolates displayed medium sized (2–4 mm) compact circular colonies on agar roll tubes and thin loose biofilm-like growth in liquid medium. Microscopic examination revealed monoflagellated zoospores and polycentric thalli with highly branched nucleated filamentous rhizomycelium, a growth pattern encountered in a minority of described AGF genera so far. The obtained isolates are characterized by formation of spherical vesicles at the hyphal tips from which multiple sporangia formed either directly on the spherical vesicles or at the end of sporangiophores. Phylogenetic analysis using the D1/D2 regions of the large ribosomal subunit (D1/D2 LSU) and the ribosomal internal transcribed spacer 1 (ITS1) revealed sequence similarities of 93.5 and 81.3%, respectively, to the closest cultured relatives (Orpinomyces joyonii strain D3A (D1/D2 LSU) and Joblinomyces apicalis strain GFH681 (ITS1). Substrate utilization experiments using the type strain (BB-3T) demonstrated growth capabilities on a wide range of mono-, oligo- and polysaccharides, including glucose, xylose, mannose, fructose, cellobiose, sucrose, maltose, trehalose, lactose, cellulose, xylan, starch and raffinose. We propose accommodating these novel isolates in a new genus and species, for which the name Paucimyces polynucleatus gen. nov., sp. nov. is proposed.

2021 ◽  
Author(s):  
Radwa A Hanafy ◽  
Noha H Youssef ◽  
Mostafa Elshahed

The anaerobic gut fungi (AGF, phylum Neocallimastigomycota) reside in the alimentary tracts of herbivores. Multiple novel, yet-uncultured AGF taxa have recently been identified in culture-independent diversity surveys. Here, we report on the isolation and characterization of the first representative of the RH5 lineage from fecal samples of a wild blackbuck (Indian Antelope) from Sutton County, Texas, USA. The isolates displayed medium sized (2-4 mm) compact circular colonies on agar roll tubes and thin loose biofilm-like growth in liquid medium. Microscopic examination revealed monoflagellated zoospores and polycentric thalli with highly branched nucleated filamentous rhizomycelium, a growth pattern encountered in a minority of described AGF genera so far. The obtained isolates are characterized by formation of spherical vesicles at the hyphal tips from which multiple sporangia formed either directly on the spherical vesicles or at the end of sporangiophores. Phylogenetic analysis using the D1/D2 regions of the large ribosomal subunit (D/D2 LSU) and the ribosomal internal transcribed spacer 1 (ITS1) revealed sequence similarities of 93.5%, and 81.3%, respectively, to the closest cultured relatives (Orpinomyces joyonii strain D3A (D1/D2 LSU), and Joblinomyces apicalis strain GFH681 (ITS1). Substrate utilization experiments using the type strain (BB-3) demonstrated growth capabilities on a wide range of mono-, oligo-, and polysaccharides, including glucose, xylose, mannose, fructose, cellobiose, sucrose, maltose, trehalose, lactose, cellulose, xylan, starch, and raffinose. We propose accommodating these novel isolates in a new genus and species, for which the name Paucimyces polynucleatus is proposed. The type species is strain BB-3.


2021 ◽  
Vol 9 (5) ◽  
pp. 890
Author(s):  
Pietro Tedesco ◽  
Fortunato Palma Esposito ◽  
Antonio Masino ◽  
Giovanni Andrea Vitale ◽  
Emiliana Tortorella ◽  
...  

Extremophilic microorganisms represent a unique source of novel natural products. Among them, cold adapted bacteria and particularly alpine microorganisms are still underexplored. Here, we describe the isolation and characterization of a novel Gram-positive, aerobic rod-shaped alpine bacterium (KRL4), isolated from sediments from the Karuola glacier in Tibet, China. Complete phenotypic analysis was performed revealing the great adaptability of the strain to a wide range of temperatures (5–40 °C), pHs (5.5–8.5), and salinities (0–15% w/v NaCl). Genome sequencing identified KRL4 as a member of the placeholder genus Exiguobacterium_A and annotation revealed that only half of the protein-encoding genes (1522 of 3079) could be assigned a putative function. An analysis of the secondary metabolite clusters revealed the presence of two uncharacterized phytoene synthase containing pathways and a novel siderophore pathway. Biological assays confirmed that the strain produces molecules with antioxidant and siderophore activities. Furthermore, intracellular extracts showed nematocidal activity towards C. elegans, suggesting that strain KRL4 is a source of anthelmintic compounds.


Biologics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 164-176
Author(s):  
Abdallah S. Abdelsattar ◽  
Anan Safwat ◽  
Rana Nofal ◽  
Amera Elsayed ◽  
Salsabil Makky ◽  
...  

Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 515-522
Author(s):  
L P Wakem ◽  
F Sherman

Abstract Approximately 290 omnipotent suppressors, which enhance translational misreading, were isolated in strains of the yeast Saccharomyces cerevisiae containing the psi+ extrachromosomal determinant. The suppressors could be assigned to 8 classes by their pattern of suppression of five nutritional markers. The suppressors were further distinguished by differences in growth on paromomycin medium, hypertonic medium, low temperatures (10 degrees), nonfermentable carbon sources, alpha-aminoadipic acid medium, and by their dominance and recessiveness. Genetic analysis of 12 representative suppressors resulted in the assignment of these suppressors to 6 different loci, including the three previously described loci SUP35 (chromosome IV), SUP45 (chromosome II) and SUP46 (chromosome II), as well as three new loci SUP42 (chromosome IV), SUP43 (chromosome XV) and SUP44 (chromosome VII). Suppressors belonging to the same locus had a wide range of different phenotypes. Differences between alleles of the same locus and similarities between alleles of different loci suggest that the omnipotent suppressors encode proteins that effect different functions and that altered forms of each of the proteins can effect the same function.


2020 ◽  
Author(s):  
Radwa A. Hanafy ◽  
Britny Johnson ◽  
Noha H. Youssef ◽  
Mostafa S. Elshahed

AbstractThe anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tracts of herbivores where they play a central role in the breakdown of ingested plant material. Accurate assessment of AGF diversity has been hampered by inherent deficiencies of the internal transcribed spacer1 (ITS1) region as a phylogenetic marker. Here, we report on the development and implementation of the D1/D2 region of the large ribosomal subunit (D1/D2 LSU) as a novel marker for assessing AGF diversity in culture-independent surveys. Sequencing a 1.4-1.5 Kbp amplicon encompassing the ITS1-5.8S rRNA-ITS2-D1/D2 LSU region in the ribosomal RNA locus from fungal strains and environmental samples generated a reference D1/D2 LSU database for all cultured AGF genera, as well as the majority of candidate genera encountered in prior ITS1-based diversity surveys. Subsequently, a D1/D2 LSU-based diversity survey using long read PacBio SMRT sequencing technology was conducted on fecal samples from 21 wild and domesticated herbivores. Twenty-eight genera and candidate genera were identified in the 17.7 K sequences obtained, including multiple novel lineages that were predominantly, but not exclusively, identified in wild herbivores. Association between certain AGF genera and animal lifestyles, or animal host family was observed. Finally, to address the current paucity of AGF isolates, concurrent isolation efforts utilizing multiple approaches to maximize recovery yielded 216 isolates belonging to twelve different genera, several of which have no prior cultured-representatives. Our results establish the utility of D1/D2 LSU and PacBio sequencing for AGF diversity surveys, and the culturability of a wide range of AGF taxa, and demonstrate that wild herbivores represent a yet-untapped reservoir of AGF diversity.


2020 ◽  
Vol 101 (10) ◽  
pp. 1027-1036
Author(s):  
Hayato Harima ◽  
Michihito Sasaki ◽  
Masahiro Kajihara ◽  
Gabriel Gonzalez ◽  
Edgar Simulundu ◽  
...  

Mammalian orthoreovirus (MRV) has been identified in humans, livestock and wild animals; this wide host range allows individual MRV to transmit into multiple species. Although several interspecies transmission and genetic reassortment events of MRVs among humans, livestock and wildlife have been reported, the genetic diversity and geographic distribution of MRVs in Africa are poorly understood. In this study, we report the first isolation and characterization of MRVs circulating in a pig population in Zambia. In our screening, MRV genomes were detected in 19.7 % (29/147) of faecal samples collected from pigs by reverse transcription PCR. Three infectious MRV strains (MRV-85, MRV-96 and MRV-117) were successfully isolated, and their complete genomes were sequenced. Recombination analyses based on the complete genome sequences of the isolated MRVs demonstrated that MRV-96 shared the S3 segment with a different MRV isolated from bats, and that the L1 and M3 segments of MRV-117 originated from bat and human MRVs, respectively. Our results suggest that the isolated MRVs emerged through genetic reassortment events with interspecies transmission. Given the lack of information regarding MRVs in Africa, further surveillance of MRVs circulating among humans, domestic animals and wildlife is required to assess potential risk for humans and animals.


2016 ◽  
Vol 8 (4) ◽  
pp. 2292-2297
Author(s):  
Asma Ul Husna ◽  
Shabir Ahmad Mir ◽  
Rusheeba Manzoor ◽  
Farhat Pandit ◽  
Shakil Ahmad Wani ◽  
...  

Salmonella isolates should be distinguished as it may assist in tracing the source of an outbreak and monitoring trends in antimicrobial resistance associated with a particular type. The specific detection of these Salmonella serotypes is therefore extremely important in order to attribute an isolate to a previously known epidemic outbreak. The present investigation was to isolate and identify S. Gallinarum, to study variation in the profile of outer membrane proteins (OMPs) and to determine in vitro antibiogram of S. Gallinarum in poultry. A total of 228 faecal samples and 22 visceral samples suspected for Salmonellosis were collected, of these 15 samples (6.0%) were found positive for S. Gallinarum. In the present study, rfbS gene sequence was helpful in the serotype-specific detection of S. Gallinarum giving a 187 bp product. Salmonella Gallinarum crude protein extracts determined by SDSPAGE showed migration of OMPs as several bands at approximate moleculer weights of appx. 45 kDa, 55 kDa, 64 kDa, 65 kDa, 74 kDa, 110 kDa, 120 kDa, 135 kDa, 150 kDa,155 kDa, 200 kDa and above 200 kDa. The study indicated a definite variation in the profile of OMPs of various Salmonella Gallinarum strains with major OMPs in the range of appx 80-100 kDa which could be the target for vaccine production. All the isolates tested against 14 antimicrobial agents showed variable susceptibility pattern with highest resistance to nalidixic acid, ampicillin and sulphadiazine and sensitivity to chloramphenicol, gentamicin and enrofloxacin.


2021 ◽  
Author(s):  
Shanyu Chen ◽  
Wangyu Meng ◽  
Ziyao Zhou ◽  
Lei Deng ◽  
Xiaogang Shi ◽  
...  

Abstract Background Blastocystis, a highly prevalent eukaryotic parasite, has been identified in a wide range of hosts, including humans, domestic and wild animals. Many animals are potential sources of Blastocystis infection for humans, while few information about the prevalence of Blastocystis in wild animals have being documented. Therefore, the present study was designed to investigate the prevalence and subtypes of Blastocystis in wild animals of Sichuan Wolong National Natural Reserve, southwestern of China, so as to assess the zoonotic potential of these animals. Methods A total of 300 faecal samples were collected from 27 wildlife species in three areas of Sichuan Wolong National Natural Reserve in southwestern China. The subtype (ST) genetic characteristics and prevalence of Blastocystis were determined by PCR amplification of the barcode region (a fragment of ∼600 bp) of the SSU rRNA gene, and phylogenetic analysis were further performed to determine the genetic characteristics of Blastocystis subtypes. Results 30 of 300 faecal samples (10.0%) were Blastocystis-positive. The highest prevalence of Blastocystis was found in Yinchanggou (18.3%), which was significantly higher than that in Niutoushan (7.5%), and Genda (5.5%) (P < 0.05). Specifically, the highest prevalence of Blastocystis was found in primates (20.0%, 1/5), followed by rodentia 14.3% (1/7), artiodactyla 13.1% (26/198), carnivora 2.3% (2/87), galliformes 0% (0/3). Sequence analysis showed 5 subtypes (ST1, ST3, ST5, ST13, and ST14), with ST13 and ST14 as the predominant subtype (33.3%, 10/30), followed by ST1 (20.0%, 6/30). Conclusions To the best of our knowledge, this is the first molecular investigation on Blastocystis infection in wild animals in southwestern of China. ST1, ST3, and ST5 were identified in both humans and wild animals, suggesting that these wild animals may be potential reservoirs of Blastocystis for human infection.


2019 ◽  
Vol 8 (17) ◽  
Author(s):  
Justin X. Boeckman ◽  
Lauren Lessor ◽  
Jason J. Gill ◽  
Mei Liu

Klebsiella pneumoniae is an important human pathogen due to the wide range of infections it can cause and its emerging drug resistance. Isolation and characterization of phage infecting K. pneumoniae could be important for future therapeutic applications.


1983 ◽  
Vol 209 (1) ◽  
pp. 91-97 ◽  
Author(s):  
R T Jacob ◽  
P G Bhat ◽  
T N Pattabiraman

A specific enterokinase inhibitor from kidney bean (Phaseolus vulgaris) was purified to homogeneity. It showed a single protein band on sodium dodecyl sulphate/polyacryl-amide-gel electrophoresis in the presence of mercaptoethanol, and the Mr was 31000. Aspartic acid was identified as the N-terminus of the inhibitor. The Mr by gel chromatography on Sephadex G-200 was found to be 60000, indicating the dimeric nature of the inhibitor. The inhibitor was found to be a glycoprotein. The monosaccharide moieties were glucose, mannose, glucuronic acid and glucosamine in the proportions 3.15%, 5.0%, 0.85% and 1.3% respectively. The inhibitor was most active on pig enterokinase, followed by bovine and human enterokinases. Maximal inhibitory activity was elicited by preincubation of the inhibitor with the enzyme for 15 min. Digestion with pepsin resulted in loss of inhibitory activity. The inhibitor was stable to exposure to a wide range of pH values (2-10), and exposure to pH above 10 resulted in loss of inhibitory activity. Modification of arginine residues by cyclohexane 1,2-dione and ninhydrin led to complete loss of enterokinase-inhibitory activity.


Sign in / Sign up

Export Citation Format

Share Document