scholarly journals The infectivity of progeny adenovirus in the presence of neutralizing antibody

2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Takamasa Hirai ◽  
Anna Sato ◽  
Naoya Koizumi ◽  
Yoh Kurioka ◽  
Yui Suzuki ◽  
...  

Human adenoviruses (Ads), common pathogens that cause upper respiratory and gastrointestinal infections, are blocked by neutralizing antibodies (nAbs). However, Ads are not fully eliminated even in hosts with nAbs. In this study, we assessed the infectivity of progeny Ad serotype 5 (Ad5) in the presence of nAb. The infectivity of Ad5 was evaluated according to the expression of the Ad genome and reporter gene. Infection by wild-type Ad5 and Ad5 vector continued to increase until 3 days after infection even in the presence of nAb. We established an assay for determining the infection levels of progeny Ad5 using a sorting system with magnetic beads and observed little difference in progeny Ad5 counts in the presence and absence of nAb 1 day after infection. Moreover, progeny Ad5 in the presence of nAb more effectively infected coxsackievirus and adenovirus receptor (CAR)-positive cells than CAR-negative cells. We investigated the function of fiber proteins, which are the binding partners of CAR, during secondary infection, observing that fibre proteins spread from infected cells to adjacent cells in a CAR-dependent manner. In conclusion, this study revealed that progeny Ad5 could infect cells even in the presence of nAb, differing from the common features of the Ad5 infection cycle. Our findings may be useful for developing new therapeutic agents against Ad infection.

2017 ◽  
Vol 91 (9) ◽  
Author(s):  
S. Abigail Smith ◽  
Cynthia A. Derdeyn

ABSTRACT HIV-1 infection from cell-to-cell may provide an efficient mode of viral spread in vivo and could therefore present a significant challenge for preventative or therapeutic strategies based on broadly neutralizing antibodies. Indeed, Li et al. (H. Li, C. Zony, P. Chen, and B. K. Chen, J. Virol. 91:e02425-16, 2017, https://doi.org/10.1128/JVI.02425-16 ) showed that the potency and magnitude of multiple HIV-1 broadly neutralizing antibody classes are decreased during cell-to-cell infection in a context-dependent manner. A functional motif in gp41 appears to contribute to this differential susceptibility by modulating exposure of neutralization epitopes.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1957
Author(s):  
Heidi Auerswald ◽  
Simone Kann ◽  
Leonard Klepsch ◽  
Janne Hülsemann ◽  
Ines Rudnik ◽  
...  

Sequential infections of humans by the four different dengue serotypes (DENV-1–4) lead to neutralizing antibodies with group, cross, and type specificity. Virus neutralization of serotypes showed monotypic but mostly multitypic neutralization profiles due to multiple virus exposures. We have studied neutralization to heterologous, reference DENV serotypes using paired sera collected between days 6 and 37 after onset of fever. The DENV-primed neutralization profile of the first serum sample, which was monitored by a foci reduction neutralization test (FRNT), was boosted but the neutralization profile stayed unchanged in the second serum sample. In 45 of 47 paired serum samples, the predominant neutralization was directed against DENV serotypes distinct from the infecting serotype. Homologous neutralization studies using sera and viruses from the same area, 33 secondary sera from DENV-1 infected Cambodian patients and eight virus isolates from Cambodia, showed that the FRNT assay accurately predicted the lack of a predominant antibody response against the infecting DENV-1 serotype in contrast to FRNT results using the WHO set of DENV viruses. This report provides evidence that DENV-primed multitypic neutralizing antibody profiles were mainly boosted and stayed unchanged after secondary infection and that DENV neutralization was predominantly directed to heterologous DENV but not against the infecting homologous serotype.


2016 ◽  
Vol 113 (3) ◽  
pp. 728-733 ◽  
Author(s):  
Leah C. Katzelnick ◽  
Magelda Montoya ◽  
Lionel Gresh ◽  
Angel Balmaseda ◽  
Eva Harris

The four dengue virus serotypes (DENV1–4) are mosquito-borne flaviviruses that infect ∼390 million people annually; up to 100 million infections are symptomatic, and 500,000 cases progress to severe disease. Exposure to a heterologous DENV serotype, the specific infecting DENV strains, and the interval of time between infections, as well as age, ethnicity, genetic polymorphisms, and comorbidities of the host, are all risk factors for severe dengue. In contrast, neutralizing antibodies (NAbs) are thought to provide long-lived protection against symptomatic infection and severe dengue. The objective of dengue vaccines is to provide balanced protection against all DENV serotypes simultaneously. However, the association between homotypic and heterotypic NAb titers and protection against symptomatic infection remains poorly understood. Here, we demonstrate that the titer of preinfection cross-reactive NAbs correlates with reduced likelihood of symptomatic secondary infection in a longitudinal pediatric dengue cohort in Nicaragua. The protective effect of NAb titers on infection outcome remained significant when controlled for age, number of years between infections, and epidemic force, as well as with relaxed or more stringent criteria for defining inapparent DENV infections. Further, individuals with higher NAb titers immediately after primary infection had delayed symptomatic infections compared with those with lower titers. However, overall NAb titers increased modestly in magnitude and remained serotype cross-reactive in the years between infections, possibly due to reexposure. These findings establish that anti-DENV NAb titers correlate with reduced probability of symptomatic DENV infection and provide insights into longitudinal characteristics of antibody-mediated immunity to DENV in an endemic setting.


2018 ◽  
Vol 92 (18) ◽  
Author(s):  
Julia C. Frei ◽  
Ariel S. Wirchnianski ◽  
Jennifer Govero ◽  
Olivia Vergnolle ◽  
Kimberly A. Dowd ◽  
...  

ABSTRACTDengue virus is the most globally prevalent mosquito-transmitted virus. Primary infection with one of four cocirculating serotypes (DENV-1 to -4) causes a febrile illness, but secondary infection with a heterologous serotype can result in severe disease, due in part to antibody-dependent enhancement of infection (ADE). In ADE, cross-reactive but nonneutralizing antibodies, or subprotective levels of neutralizing antibodies, promote uptake of antibody-opsonized virus in Fc-γ receptor-positive cells. Thus, elicitation of broadly neutralizing antibodies (bNAbs), but not nonneutralizing antibodies, is desirable for dengue vaccine development. Domain III of the envelope glycoprotein (EDIII) is targeted by bNAbs and thus is an attractive immunogen. However, immunization with EDIII results in sera with limited neutralization breadth. We developed “resurfaced” EDIII immunogens (rsDIIIs) in which the A/G strand epitope that is targeted by bNAb 4E11 is maintained but less desirable epitopes are masked. RsDIIIs bound 4E11, but not serotype-specific or nonneutralizing antibodies. One rsDIII and, unexpectedly, wild-type (WT) DENV-2 EDIII elicited cross-neutralizing antibody responses against DENV-1 to -3 in mice. While these sera were cross-neutralizing, they were not sufficiently potent to protect AG129 immunocompromised mice at a dose of 200 μl (50% focus reduction neutralization titer [FRNT50], ∼1:60 to 1:130) against mouse-adapted DENV-2. Our results provide insight into immunogen design strategies based on EDIII.IMPORTANCEDengue virus causes approximately 390 million infections per year. Primary infection by one serotype causes a self-limiting febrile illness, but secondary infection by a heterologous serotype can result in severe dengue syndrome, which is characterized by hemorrhagic fever and shock syndrome. This severe disease is thought to arise because of cross-reactive, non- or poorly neutralizing antibodies from the primary infection that are present in serum at the time of secondary infection. These cross-reactive antibodies enhance the infection rather than controlling it. Therefore, induction of a broadly and potently neutralizing antibody response is desirable for dengue vaccine development. Here, we explore a novel strategy for developing immunogens based on domain III of the E glycoprotein, where undesirable epitopes (nonneutralizing or nonconserved) are masked by mutation. This work provides fundamental insight into the immune response to domain III that can be leveraged for future immunogen design.


2006 ◽  
Vol 203 (8) ◽  
pp. 2033-2042 ◽  
Author(s):  
Lars Hangartner ◽  
Raphaël M. Zellweger ◽  
Mattia Giobbi ◽  
Jacqueline Weber ◽  
Bruno Eschli ◽  
...  

The biological relevance of nonneutralizing antibodies elicited early after infection with noncytopathic persistence-prone viruses is unclear. We demonstrate that cytotoxic T lymphocyte–deficient TgH(KL25) mice, which are transgenic for the heavy chain of the lymphocytic choriomeningitis virus (LCMV)–neutralizing monoclonal antibody KL25, mount a focused neutralizing antibody response following LCMV infection, and that this results in the emergence of neutralization escape virus variants. Further investigation revealed that some of the escape variants that arose early after infection could still bind to the selecting antibody. In contrast, no antibody binding could be detected for late isolates, indicating that binding, but nonneutralizing, antibodies exerted a selective pressure on the virus. Infection of naive TgH(KL25) mice with distinct escape viruses differing in their antibody-binding properties revealed that nonneutralizing antibodies accelerated clearance of antibody-binding virus variants in a partly complement-dependent manner. Virus variants that did not bind antibodies were not affected. We therefore conclude that nonneutralizing antibodies binding to the same antigenic site as neutralizing antibodies are biologically relevant by limiting early viral spread.


Author(s):  
Tatsuro Saruga ◽  
Tadaatsu Imaizumi ◽  
Shogo Kawaguchi ◽  
Kazuhiko Seya ◽  
Tomoh Matsumiya ◽  
...  

AbstractC-X-C motif chemokine 10 (CXCL10) is an inflammatory chemokine and a key molecule in the pathogenesis of rheumatoid arthritis (RA). Melanoma differentiation-associated gene 5 (MDA5) is an RNA helicase that plays a role in innate immune and inflammatory reactions. The details of the regulatory mechanisms of CXCL10 production and the precise role of MDA5 in RA synovitis have not been fully elucidated. The aim of this study was to examine the role of MDA5 in regulating CXCL10 expression in cultured human rheumatoid fibroblast-like synoviocytes (RFLS). RFLS was stimulated with Toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid (poly I:C), a synthetic double-stranded RNA mimetic. Expression of interferon beta (IFN-β), MDA5, and CXCL10 was measured by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and enzyme-linked immunosorbent assay. A neutralizing antibody of IFN-β and siRNA-mediated MDA5 knockdown were used to determine the role of these molecules in regulating CXCL10 expression downstream of TLR3 signaling in RFLS. Poly I:C induced IFN-β, MDA5, and CXCL10 expression in a concentration- and time-dependent manner. IFN-β neutralizing antibody suppressed the expression of MDA5 and CXCL10, and knockdown of MDA5 decreased a part of CXCL10 expression (p < 0.001). The TLR3/IFN-β/CXCL10 axis may play a crucial role in the inflammatory responses in RA synovium, and MDA5 may be partially involved in this axis.


2021 ◽  
Vol 4 (1) ◽  
pp. 60-71
Author(s):  
Donovan Guttieres ◽  
Anthony J Sinskey ◽  
Stacy L Springs

Abstract Background Neutralizing antibodies (nAbs) against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can play an important role in reducing impacts of the COVID-19 pandemic, complementing ongoing public health efforts such as diagnostics and vaccination. Rapidly designing, manufacturing and distributing nAbs requires significant planning across the product value chain and an understanding of the opportunities, challenges and risks throughout. Methods A systems framework comprised of four critical components is presented to aid in developing effective end-to-end nAbs strategies in the context of a pandemic: (1) product design and optimization, (2) epidemiology, (3) demand and (4) supply. Quantitative models are used to estimate product demand using available epidemiological data, simulate biomanufacturing operations from typical bioprocess parameters and calculate antibody production costs to meet clinical needs under various realistic scenarios. Results In a US-based case study during the 9-month period from March 15 to December 15, 2020, the projected number of SARS-CoV-2 infections was 15.73 million. The estimated product volume needed to meet therapeutic demand for the maximum number of clinically eligible patients ranged between 6.3 and 31.5 tons for 0.5 and 2.5 g dose sizes, respectively. The relative production scale and cost needed to meet demand are calculated for different centralized and distributed manufacturing scenarios. Conclusions Meeting demand for anti-SARS-CoV-2 nAbs requires significant manufacturing capacity and planning for appropriate administration in clinical settings. MIT Center for Biomedical Innovation’s data-driven tools presented can help inform time-critical decisions by providing insight into important operational and policy considerations for making nAbs broadly accessible, while considering time and resource constraints.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Trëndelina Rrustemi ◽  
Öykü Gönül Geyik ◽  
Ali Burak Özkaya ◽  
Taylan Kurtuluş Öztürk ◽  
Zeynep Yüce ◽  
...  

AbstractObjectivesCancer cells modulate metabolic pathways to ensure continuity of energy, macromolecules and redox- homeostasis. Although these vulnerabilities are often targeted individually, targeting all with an enzyme may prove a novel approach. However, therapeutic enzymes are prone to proteolytic degradation and neutralizing antibodies leading to a reduced half-life and effectiveness. We hypothesized that glucose oxidase (GOX) enzyme that catalyzes oxidation of glucose and production of hydrogen peroxide, may hit all these targets by depleting glucose; crippling anabolic pathways and producing reactive oxygen species (ROS); unbalancing redox homeostasis.MethodsWe encapsulated GOX in an acrylamide layer and then performed activity assays in denaturizing settings to determine protection provided by encapsulation. Afterwards, we tested the effects of encapsulated (enGOX) and free (fGOX) enzyme on MCF-7 breast cancer cells.ResultsGOX preserved 70% of its activity following encapsulation. When fGOX and enGOX treated with guanidinium chloride, fGOX lost approximately 72% of its activity, while enGOX only lost 30%. Both forms demonstrated remarkable resilience against degradation by proteinase K and inhibited viability of MCF-7 cells in an activity-dependent manner.ConclusionsEncapsulation provided protection to GOX against denaturation without reducing its activity, which would prolong half-life of the enzyme when administered intravenously.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 307
Author(s):  
Yong Bok Seo ◽  
You Suk Suh ◽  
Ji In Ryu ◽  
Hwanhee Jang ◽  
Hanseul Oh ◽  
...  

The unprecedented and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) has motivated the need for a rapidly producible and scalable vaccine. Here, we developed a synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19. In mice, immunization with GX-19 elicited not only S-specific systemic and pulmonary antibody responses but also Th1-biased T cell responses in a dose-dependent manner. GX-19-vaccinated nonhuman primates seroconverted rapidly and exhibited a detectable neutralizing antibody response as well as multifunctional CD4+ and CD8+ T cell responses. Notably, when the immunized nonhuman primates were challenged at 10 weeks after the last vaccination with GX-19, they had reduced viral loads in contrast to non-vaccinated primates as a control. These findings indicate that GX-19 vaccination provides a durable protective immune response and also support further development of GX-19 as a vaccine candidate for SARS-CoV-2.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 628
Author(s):  
Aeron C. Hurt ◽  
Adam K. Wheatley

The emergence of SARS-CoV-2 and subsequent COVID-19 pandemic has resulted in a significant global public health burden, leading to an urgent need for effective therapeutic strategies. In this article, we review the role of SARS-CoV-2 neutralizing antibodies (nAbs) in the clinical management of COVID-19 and provide an overview of recent randomized controlled trial data evaluating nAbs in the ambulatory, hospitalized and prophylaxis settings. Two nAb cocktails (casirivimab/imdevimab and bamlanivimab/etesevimab) and one nAb monotherapy (bamlanivimab) have been granted Emergency Use Authorization by the US Food and Drug Administration for the treatment of ambulatory patients who have a high risk of progressing to severe disease, and the European Medicines Agency has similarly recommended both cocktails and bamlanivimab monotherapy for use in COVID-19 patients who do not require supplemental oxygen and who are at high risk of progressing to severe COVID-19. Efficacy of nAbs in hospitalized patients with COVID-19 has been varied, potentially highlighting the challenges of antiviral treatment in patients who have already progressed to severe disease. However, early data suggest a promising prophylactic role for nAbs in providing effective COVID-19 protection. We also review the risk of treatment-emergent antiviral resistant “escape” mutants and strategies to minimize their occurrence, discuss the susceptibility of newly emerging SARS-COV-2 variants to nAbs, as well as explore administration challenges and ways to improve patient access.


Sign in / Sign up

Export Citation Format

Share Document