scholarly journals Parallel evolution and local differentiation in quinolone resistance in Pseudomonas aeruginosa

Microbiology ◽  
2011 ◽  
Vol 157 (4) ◽  
pp. 937-944 ◽  
Author(s):  
Alex Wong ◽  
Rees Kassen

The emergence and spread of antibiotic resistance in pathogens is a major impediment to the control of microbial disease. Here, we review mechanisms of quinolone resistance in Pseudomonas aeruginosa, an important nosocomial pathogen and a major cause of morbidity in cystic fibrosis (CF) patients. In this quantitative literature review, we find that mutations in DNA gyrase A, the primary target of quinolones in Gram-negative bacteria, are the most common resistance mutations identified in clinical samples of all origins, in keeping with previous observations. However, the identities of non-gyrase resistance mutations vary systematically between samples isolated from CF patients and those isolated from acute infections. CF-derived strains tend to harbour mutations in the efflux pump regulator nfxB, while non-CF strains tend to bear mutations in the efflux regulator mexR or in parC, which encodes one of two subunits of DNA topoisomerase IV. We suggest that differences in resistance mechanisms between CF and non-CF strains result either from local adaptation to different sites of infection or from differences in mutational processes between different environments. We further discuss the therapeutic implications of local differentiation in resistance mechanisms to a common antibiotic.

ANKEM Dergisi ◽  
2021 ◽  
Author(s):  
Nilüfer Uzunbayır Akel ◽  
Yamaç Tekintaş ◽  
Fethiye Ferda Yılmaz ◽  
İsmail Öztürk ◽  
Mustafa Ökeer ◽  
...  

Pseudomonas aeruginosa is one of the most important causes of hospital infections. Although different antibiotic groups are used for the treatment of P.aeruginosa infections, quinolone groups are distinguished by the advantages of oral administration. However, in recent years, resistance against members of this group has made treatment more difficult. The aim of this study was to investigate the epidemiological relationship and possible mechanisms of resistance in ciprofloxacin resistant P. aeruginosa isolates from Ege University Hospital. The identification of P.aeruginosa bacteria isolated from clinical samples in Ege University Medical Faculty Medical Microbiology Laboratory was determined by VITEK MS automated systems by VITEK compact, antimicrobial susceptibility. The epidemiological relationships of the ciprofloxacin resistant isolates were determined by Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The presence of qnrA, qnrB, qnrS, qepA genes, the quinolone resistance genes and nfxB, mexR, the regulatory genes of the efflux pump, was determined by PCR. The phenylalanine-arginine β-naphthylamide (PAβN) assay was used to determine the activation of the efflux pump. Twenty-two isolates (26.5 %) were found resistant to ciprofloxacin. According to the ERIC-PCR results, 11 unrelated clones were detected. Ciprofloxacin minimum inhibitory concentration (MIC) values were decreased 2-64 times in 10 isolates in the presence of PAIN. No ciprofloxacin MIC change was detected in one isolate. The presence of pump regulatory genes was determined in 10 of the 11 representative isolates, while only qnrB of the genes associated with quinolone resistance was detected in seven representative isolates. qnrA, qnrS, qepA genes were not detected in any isolate. Ciprofloxacin resistant P.aeruginosa isolates are isolated from our hospital. It is noteworthy that the isolates belonging to different genetic groups are in circulation in clinics. Basic resistance mechanisms are thought to be efflux pumps and qnrB genes.


2021 ◽  
Vol 22 (11) ◽  
pp. 6063
Author(s):  
Negin Malekian ◽  
Ali Al-Fatlawi ◽  
Thomas U. Berendonk ◽  
Michael Schroeder

Single mutations can confer resistance to antibiotics. Identifying such mutations can help to develop and improve drugs. Here, we systematically screen for candidate quinolone resistance-conferring mutations. We sequenced highly diverse wastewater E. coli and performed a genome-wide association study (GWAS) to determine associations between over 200,000 mutations and quinolone resistance phenotypes. We uncovered 13 statistically significant mutations including 1 located at the active site of the biofilm dispersal gene bdcA and 6 silent mutations in the aminoacyl-tRNA synthetase valS. The study also recovered the known mutations in the topoisomerases gyrase (gyrA) and topoisomerase IV (parC). In summary, we demonstrate that GWAS effectively and comprehensively identifies resistance mutations without a priori knowledge of targets and mode of action. The results suggest that mutations in the bdcA and valS genes, which are involved in biofilm dispersal and translation, may lead to novel resistance mechanisms.


2007 ◽  
Vol 51 (11) ◽  
pp. 4062-4070 ◽  
Author(s):  
B. Henrichfreise ◽  
I. Wiegand ◽  
W. Pfister ◽  
B. Wiedemann

ABSTRACT In this study, we analyzed the mechanisms of multiresistance for 22 clinical multiresistant and clonally different Pseudomonas aeruginosa strains from Germany. Twelve and 10 strains originated from cystic fibrosis (CF) and non-CF patients, respectively. Overproduction of the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM was studied. Furthermore, loss of OprD, alterations in type II topoisomerases, AmpC overproduction, and the presence of 25 acquired resistance determinants were investigated. The presence of a hypermutation phenotype was also taken into account. Besides modifications in GyrA (91%), the most frequent mechanisms of resistance were MexXY-OprM overproduction (82%), OprD loss (82%), and AmpC overproduction (73%). Clear differences between strains from CF and non-CF patients were found: numerous genes coding for aminoglycoside-modifying enzymes and located, partially in combination with β-lactamase genes, in class 1 integrons were found only in strains from non-CF patients. Furthermore, multiple modifications in type II topoisomerases conferring high quinolone resistance levels and overexpression of MexAB-OprM were exclusively detected in multiresistant strains from non-CF patients. Correlations of the detected phenotypes and resistance mechanisms revealed a great impact of efflux pump overproduction on multiresistance in P. aeruginosa. Confirming previous studies, we found that additional, unknown chromosomally mediated resistance mechanisms remain to be determined. In our study, 11 out of 12 strains and 3 out of 10 strains from CF patients and non-CF patients, respectively, were hypermutable. This extremely high proportion of mutator strains should be taken into consideration for the treatment of multiresistant P. aeruginosa.


2020 ◽  
Vol 10 (3) ◽  
pp. 412-418
Author(s):  
Fei Xu ◽  
Cheng Chen ◽  
Xing Li ◽  
Bo Zhang

Pseudomonas aeruginosa (P. aeruginosa) is a common opportunistic and nosocomial bacterial pathogen. Various multi-resistance mechanisms present across numerous P. aeruginosa strains counteract conventional antimicrobial therapy, thereby becoming a great challenge. This study aimed to establish the application of immunomagnetic isolation and chemiluminescence to detect the presence of extended spectra of β-lactamases encoding genes: blaTEM and blaVEB; metallo-beta-lactamases encoding gene: blaVIM; aminoglycoside modifying enzymes encoding gene: aac(6)II, ant(3)I; and the specific gene for P. aeruginosa, gyrB. P. aeruginosa was specifically selected using the immunomagnetic nanoparticles (IMNPs) in the six parallel bacterial plates counting, proving that they are reliable. Then, the high efficiency of IMNPs@Probes in targeting the resistance genes of P. aeruginosa was demonstrated using the results of chemiluminescent intensities of blaTEM, blaVEB, blaVIM aac(6)II, ant(3)I, and gyrB (more than 10 times higher than that of the control). Sixty-eight in situ clinical samples were tested for the presence of these resistance genes, and one more blaTEM and three more blaVIM individuals were detected using this method compared to the traditional PCR. Thus, the application of our method in clinical screening is specific, accurate, and reliable, and it could be useful in the administration of appropriate treatment.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ting Yang ◽  
Lianlian Pan ◽  
Ningning Wu ◽  
Lin Wang ◽  
Zhen Liu ◽  
...  

ABSTRACT Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018 were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin, and erythromycin resistance rates were 84.69%, 51.44%, and 3.59% in U. parvum and 82.43%, 62.16%, and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis. A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and the ermB gene were identified in erythromycin-resistant Ureaplasma spp. As fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced.


2017 ◽  
Vol 9 (04) ◽  
pp. 249-253 ◽  
Author(s):  
Rohit Sachdeva ◽  
Babita Sharma ◽  
Rajni Sharma

Abstract PURPOSE: Pseudomonas aeruginosa causes a wide spectrum of infections including bacteremia, pneumonia, urinary tract infection, etc., Metallo-beta-lactamase (MBL) producing P. aeruginosa is an emerging threat and cause of concern as they have emerged as one of the most feared resistance mechanisms. This study was designed to know the prevalence of MBL production in P. aeruginosa and to evaluate the four phenotypic tests for detection of MBL production in imipenem-resistant clinical isolates of P. aeruginosa. METHODS: Totally, 800 isolates of P. aeruginosa isolated from various clinical samples were evaluated for carbapenem resistance and MBL production. All imipenem-resistant strains were tested for carabapenemase production by modified Hodge test. Screening for MBL production was done by double-disc synergy test and combined disc test (CDT). Confirmation of MBL production was done by the E-test (Ab BioDisk, Solna, Sweden). RESULTS: Out of the 800 isolates of P. aeruginosa, 250 isolates were found resistant to imipenem. Based on the results of E-test, 147 (18.37%) isolates of P. aeruginosa were positive for MBL production. The CDT has the highest sensitivity and specificity for the detection of MBL production as compared to other tests. CONCLUSION: The results of this study are indicative that MBL production is an important mechanism of carbapenem resistance among P. aeruginosa. Use of simple screening test like CDT will be crucial step toward large-scale monitoring of these emerging resistant determinants. Phenotypic test for MBL production has to be standardized, and all the isolates should be routinely screened for MBL production.


2009 ◽  
Vol 53 (6) ◽  
pp. 2266-2273 ◽  
Author(s):  
G. L. Drusano ◽  
Weiguo Liu ◽  
Christine Fregeau ◽  
Robert Kulawy ◽  
Arnold Louie

ABSTRACT The drug interaction terminology (synergy, additivity, antagonism) relates to bacterial kill. The suppression of resistance requires greater drug exposure. We examined the combination of meropenem and tobramycin for kill and resistance suppression (wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB-overexpressed mutant). The drug interaction was additive. The introduction of MexAB overexpression significantly altered the 50% inhibitory concentration of meropenem but not that of tobramycin, resulting in the recovery of a marked increase in colony numbers from drug-containing plates. For the wild type, more tobramycin-resistant isolates than meropenem-resistant isolates were present, and the tobramycin-resistant isolates were harder to suppress. MexAB overexpression unexpectedly caused a significant increase in the number of tobramycin-resistant mutants, as indexed to the area under the curve of slices through the inverted U resistance mountain. The differences were significant, except in the absence of meropenem. We hypothesize that the pump resulted in the presence of less meropenem for organism inhibition, allowing more rounds of replication and also affecting the numbers of tobramycin-resistant mutants. When resistance suppression is explored by combination chemotherapy, it is important to examine the impacts of differing resistance mechanisms for both agents.


Author(s):  
Fabiola Puértolas-Balint ◽  
Omar Warsi ◽  
Marius Linkevicius ◽  
Po-Cheng Tang ◽  
Dan I Andersson

Abstract Objectives To determine the mechanism of resistance to the antibiotic nitroxoline in Escherichia coli. Methods Spontaneous nitroxoline-resistant mutants were selected at different concentrations of nitroxoline. WGS and strain reconstruction were used to define the genetic basis for the resistance. The mechanistic basis of resistance was determined by quantitative PCR (qPCR) and by overexpression of target genes. Fitness costs of the resistance mutations and cross-resistance to other antibiotics were also determined. Results Mutations in the transcriptional repressor emrR conferred low-level resistance to nitroxoline [nitroxoline MIC (MICNOX) = 16 mg/L] by increasing the expression of the emrA and emrB genes of the EmrAB-TolC efflux pump. These resistant mutants showed no fitness reduction and displayed cross-resistance to nalidixic acid. Second-step mutants with higher-level resistance (MICNOX = 32–64 mg/L) had mutations in the emrR gene, together with either a 50 kb amplification, a mutation in the gene marA, or an IS upstream of the lon gene. The latter mutations resulted in higher-level nitroxoline resistance due to increased expression of the tolC gene, which was confirmed by overexpressing tolC from an inducible plasmid in a low-level resistance mutant. Furthermore, the emrR mutations conferred a small increase in resistance to nitrofurantoin only when combined with an nfsAB double-knockout mutation. However, nitrofurantoin-resistant nfsAB mutants showed no cross-resistance to nitroxoline. Conclusions Mutations in different genes causing increased expression of the EmrAB-TolC pump lead to an increased resistance to nitroxoline. The structurally similar antibiotics nitroxoline and nitrofurantoin appear to have different modes of action and resistance mechanisms.


2020 ◽  
Vol 75 (9) ◽  
pp. 2508-2515 ◽  
Author(s):  
María A Gomis-Font ◽  
Gabriel Cabot ◽  
Irina Sánchez-Diener ◽  
Pablo A Fraile-Ribot ◽  
Carlos Juan ◽  
...  

Abstract Objectives We analysed the dynamics and mechanisms of resistance development to imipenem alone or combined with relebactam in Pseudomonas aeruginosa WT (PAO1) and mutator (PAOMS; ΔmutS) strains. Methods PAO1 or PAOMS strains were incubated for 24 h in Mueller–Hinton Broth with 0.125–64 mg/L of imipenem ± relebactam 4 mg/L. Tubes from the highest antibiotic concentration showing growth were reinoculated in fresh medium containing concentrations up to 64 mg/L of imipenem ± relebactam for 7 days. Two colonies per strain, replicate experiment and antibiotic from early (Day 1) and late (Day 7) cultures were characterized by determining the susceptibility profiles, WGS and determination of the expression of ampC and efflux-pump-coding genes. Virulence was studied in a Caenorhabditis elegans infection model. Results Relebactam reduced imipenem resistance development for both strains, although resistance emerged much faster for PAOMS. WGS indicated that imipenem resistance was associated with mutations in the porin OprD and regulators of ampC, while the mutations in imipenem/relebactam-resistant mutants were located in oprD and regulatoras of MexAB-OprM. High-level imipenem/relebactam resistance was only documented in the PAOMS strain and was associated with an additional specific (T680A) mutation located in the catalytic pocket of ponA (PBP1a) and with reduced virulence in the C. elegans model. Conclusions Imipenem/relebactam could be a useful alternative for the treatment of MDR P. aeruginosa infections, potentially reducing resistance development during treatment. Moreover, this work deciphers the potential resistance mechanisms that may emerge upon the introduction of this novel combination into clinical practice.


2020 ◽  
Vol 8 (11) ◽  
pp. 1647 ◽  
Author(s):  
Anteneh Amsalu ◽  
Sylvia A. Sapula ◽  
Miguel De Barros Lopes ◽  
Bradley J. Hart ◽  
Anh H. Nguyen ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen displaying high intrinsic antimicrobial resistance and the ability to thrive in different ecological environments. In this study, the ability of P. aeruginosa to develop simultaneous resistance to multiple antibiotics and disinfectants in different natural niches were investigated using strains collected from clinical samples, veterinary samples, and wastewater. The correlation between biocide and antimicrobial resistance was determined by employing principal component analysis. Molecular mechanisms linking biocide and antimicrobial resistance were interrogated by determining gene expression using RT-qPCR and identifying a potential genetic determinant for co- and cross-resistance using whole-genome sequencing. A subpopulation of P. aeruginosa isolates belonging to three sequence types was resistant against the common preservative benzalkonium chloride and showed cross-resistance to fluoroquinolones, cephalosporins, aminoglycosides, and multidrug resistance. Of these, the epidemiological high-risk ST235 clone was the most abundant. The overexpression of the MexAB-OprM drug efflux pump resulting from amino acid mutations in regulators MexR, NalC, or NalD was the major contributing factor for cross-resistance that could be reversed by an efflux pump inhibitor. This is the first comparison of antibiotic-biocide cross-resistance in samples isolated from different ecological niches and serves as a confirmation of laboratory-based studies on biocide adapted isolates. The isolates from wastewater had a higher incidence of multidrug resistance and biocide-antibiotic cross-resistance than those from clinical and veterinary settings.


Sign in / Sign up

Export Citation Format

Share Document