scholarly journals Adaptation of Sucrose Metabolism in the Escherichia coli Wild-Type Strain EC3132†

2002 ◽  
Vol 184 (19) ◽  
pp. 5307-5316 ◽  
Author(s):  
Knut Jahreis ◽  
Lars Bentler ◽  
Jürgen Bockmann ◽  
Stephan Hans ◽  
Astrid Meyer ◽  
...  

ABSTRACT Although Escherichia coli strain EC3132 possesses a chromosomally encoded sucrose metabolic pathway, its growth on low sucrose concentrations (5 mM) is unusually slow, with a doubling time of 20 h. In this report we describe the subcloning and further characterization of the corresponding csc genes and adjacent genes. The csc regulon comprises three genes for a sucrose permease, a fructokinase, and a sucrose hydrolase (genes cscB, cscK, and cscA, respectively). The genes are arranged in two operons and are negatively controlled at the transcriptional level by the repressor CscR. Furthermore, csc gene expression was found to be cyclic AMP-CrpA dependent. A comparison of the genomic sequences of the E. coli strains EC3132, K-12, and O157:H7 in addition to Salmonella enterica serovar Typhimurium LT2 revealed that the csc genes are located in a hot spot region for chromosomal rearrangements in enteric bacteria. The comparison further indicated that the csc genes might have been transferred relatively recently to the E. coli wild-type EC3132 at around the time when the different strains of the enteric bacteria diverged. We found evidence that a mobile genetic element, which used the gene argW for site-specific integration into the chromosome, was probably involved in this horizontal gene transfer and that the csc genes are still in the process of optimal adaptation to the new host. Selection for such adaptational mutants growing faster on low sucrose concentrations gave three different classes of mutants. One class comprised cscR(Con) mutations that expressed all csc genes constitutively. The second class constituted a cscKo operator mutation, which became inducible for csc gene expression at low sucrose concentrations. The third class was found to be a mutation in the sucrose permease that caused an increase in transport activity.

Genetics ◽  
1988 ◽  
Vol 119 (4) ◽  
pp. 771-778
Author(s):  
C W Hill ◽  
J A Gray

Abstract In an effort to learn what factors might mitigate the establishment of Escherichia coli variants bearing major chromosomal rearrangements, we have examined the effects on cell growth of two inversions between rRNA operons. One of these inversions, IN(rrnD-rrnE), had been propagated in a commonly used subline of E. coli K-12 for approximately 30 yr before its discovery, a fact that illustrates the absence of obvious detrimental effects associated with the inversion. We found that culturing under conditions requiring repeated transition from stationary phase to rapid growth led to the replacement of IN(rrnD-rrnE) cells by cells that had undergone either of two types of additional chromosomal inversion: one type fully restored the wild-type order, while the other partially restored it. The partial reinversion was also between rrn operons, but it left a small transposition. The tendency for overgrowth by these revertants persisted through several rounds of periodic selection. In contrast, the other inversion, IN(rrnG-rrnE), was associated with severe, detrimental effects. The effects of IN(rrnG-rrnE) were also alleviated by full or partial reinversion. The probable relationship between the severity of the effects caused by the inversions and the degree of displacement of the replication origin is discussed. Spontaneous inversion events between rrn operons separated by 18% of the chromosome were estimated to occur at a frequency of roughly 10(-5). If extended to natural situations, the growth disadvantage together with the relatively high frequency of reinversion suggest that clones of cells with an inversion between these rrn operons would be readily overgrown by revertants.


2006 ◽  
Vol 188 (21) ◽  
pp. 7449-7456 ◽  
Author(s):  
Douglas F. Browning ◽  
David J. Lee ◽  
Alan J. Wolfe ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position −41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position −54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position −74.5. The E. coli acs gene is transcribed from a divergent promoter upstream from the nrf operon promoter. Transcription from the major acsP2 promoter is dependent on the cyclic AMP receptor protein and is modulated by IHF and Fis binding at multiple sites. We show that IHF binding to one of these sites, located at position −127 with respect to the nrf promoter, has a positive effect on nrf promoter activity. This activation is dependent on the face of the DNA helix, independent of IHF binding at other locations, and found only when NarL/NarP are not bound at position −74.5. Binding of NarL/NarP appears to insulate the nrf promoter from the effects of IHF. The acs-nrf regulatory region is conserved in other pathogenic E. coli strains and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1763-1770 ◽  
Author(s):  
Ryszard Zielke ◽  
Aleksandra Sikora ◽  
Rafał Dutkiewicz ◽  
Grzegorz Wegrzyn ◽  
Agata Czyż

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, Escherichia coli and Vibrio harveyi, the cgtA gene product enhances survival of cells after UV irradiation. Expression of the cgtA gene was found to be enhanced after UV irradiation of both E. coli and V. harveyi. Moderate overexpression of cgtA resulted in higher UV resistance of E. coli wild-type and dnaQ strains, but not in uvrA, uvrB, umuC and recA mutant hosts. Overexpression of the E. coli recA gene in the V. harveyi cgtA mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive cgtA mutant of E. coli than in the cgtA + strain, and contrary to wild-type bacteria, no significant increase in recA gene expression was observed after UV irradiation of this cgtA mutant. Finally, stimulation of uvrB gene transcription under these conditions was impaired in the V. harveyi cgtA mutant. All these results strongly suggest that the cgtA gene product is involved in DNA repair processes, most probably by stimulation of recA gene expression and resultant activation of RecA-dependent DNA repair pathways.


2004 ◽  
Vol 72 (12) ◽  
pp. 7030-7039 ◽  
Author(s):  
Eckhard Strauch ◽  
Christoph Schaudinn ◽  
Lothar Beutin

ABSTRACT A bacteriophage encoding the Shiga toxin 2c variant (Stx2c) was isolated from the human Escherichia coli O157 strain CB2851 and shown to form lysogens on the E. coli K-12 laboratory strains C600 and MG1655. Production of Stx2c was found in the wild-type E. coli O157 strain and the K-12 lysogens and was inducible by growing bacteria in the presence of ciprofloxacin. Phage 2851 is the first reported viable bacteriophage which carries an stx 2c gene. Electron micrographs of phage 2851 showed particles with elongated hexagonal heads and long flexible tails resembling phage lambda. Sequence analysis of an 8.4-kb region flanking the stx 2c gene and other genetic elements revealed a mosaic gene structure, as found in other Stx phages. Phage 2851 showed lysis of E. coli K-12 strains lysogenic for Stx phages encoding Stx1 (H19), Stx2 (933W), Stx (7888), and Stx1c (6220) but showed superinfection immunity with phage lambda, presumably originating from the similarity of the cI repressor proteins of both phages. Apparently, phage 2851 integrates at a different chromosomal locus than Stx2 phage 933W and Stx1 phage H19 in E. coli, explaining why Stx2c is often found in combination with Stx1 or Stx2 in E. coli O157 strains. Diagnostic PCR was performed to determine gene sequences specific for phage 2851 in wild-type E. coli O157 strains producing Stx2c. The phage 2851 q and o genes were frequently detected in Stx2c-producing E. coli O157 strains, indicating that phages related to 2851 are associated with Stx2c production in strains of E. coli O157 that were isolated in different locations and time periods.


2017 ◽  
Vol 42 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Chowdhury Rafiqul Ahsan ◽  
Farah Shamma ◽  
Nazmul Ahsan ◽  
Moutusee Jubaida Islam

Haemolysin (HlyE) is an essential virulence factor of Salmonella, Escherichia coli and other enteric bacteria. Although, a substantial degree of haemolytic activity is not seen under normal culture conditions in these organisms, however, the non-haemolytic E. coli K-12 showed significant haemolytic activity under stress conditions. To confirm this phenomenon in other enteric bacteria, in this study, the production of haemolysin in Salmonella enterica serovar Typhi under stress conditions, like oxygen and glucose starvations in vitro was investigated during March-December 2015. For this, S. typhi was cultured under oxygen or glucose starvation condition separately and this organism showed high haemolytic activity. The activity was found to be much higher when both the conditions were applied together. Also, the role of the transcription factor SlyA of S. typhi was investigated on induction of haemolytic activity. When E. coli K-12 was transformed with plasmid containing the gene of SlyA, the recombinant bacteria without any starvation condition, also showed similar haemolytic activity that was exhibited by S. typhi grown under oxygen and glucose starvation conditions. All these findings suggest that both environmental factors like oxygen or glucose starvation and overexpression of the transcription factor SlyA have important role in inducing hlyE gene expression in S. typhi.


2006 ◽  
Vol 74 (8) ◽  
pp. 4685-4693 ◽  
Author(s):  
Haiqing Sheng ◽  
Ji Youn Lim ◽  
Hannah J. Knecht ◽  
Jie Li ◽  
Carolyn J. Hovde

ABSTRACT The human pathogen Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening sequelae and transiently colonizes healthy cattle at the terminal rectal mucosa. This study analyzed virulence factors important for the clinical manifestations of human E. coli O157:H7 infection for their contribution to the persistence of E. coli in cattle. The colonizing ability of E. coli O157:H7 was compared with those of nonpathogenic E. coli K-12 and isogenic deletion mutants missing Shiga toxin (Stx), the adhesin intimin, its receptor Tir, hemolysin, or the ∼92-kb pO157. Fully ruminant steers received a single rectal application of one E. coli strain so that effects of mucosal attachment and survival at the terminal rectum could be measured without the impact of bacterial passage through the entire gastrointestinal tract. Colonization was monitored by sensitive recto-anal junction mucosal swab culture. Nonpathogenic E. coli K-12 did not colonize as well as E. coli O157:H7 at the bovine terminal rectal mucosa. The E. coli O157:H7 best able to persist had intimin, Tir, and the pO157. Strains missing even one of these factors were recovered in lower numbers and were cleared faster than the wild type. In contrast, E. coli O157:H7 strains that were missing Stx or hemolysin colonized like the wild type. For these three strains, the number of bacteria increased between days 1 and 4 postapplication and then decreased slowly. In contrast, the numbers of noncolonizing strains (K-12, Δtir, and Δeae) decreased from the day of application. These patterns consistently predicted long-term colonization or clearance of the bacteria from the bovine terminal rectal mucosa.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Brian P. Anton ◽  
Alexey Fomenkov ◽  
Elisabeth A. Raleigh ◽  
Mehmet Berkmen

SHuffle strains are genetically engineered Escherichia coli strains that are capable of oxidizing cysteines within proteins to form disulfide bonds. Here we present the complete genome of both the K-12 and B versions of SHuffle strains along with their parental ancestors. These strains have been of significant use to both the general scientific community and the biotech industry, interested in producing novel disulfide-bonded proteins that were hitherto unable to be expressed in standard E. coli expression strains.


1975 ◽  
Vol 21 (6) ◽  
pp. 754-758 ◽  
Author(s):  
John B. Armstrong ◽  
John A. Fairfield

Six methionine auxotrophs were isolated from an E. coli K-12 strain which required up to 100 times as much methionine for growth as a conventional auxotroph. In these mutants, the methionyl-tRNA synthetase had an increased Km for methionine. The Km value for the mutants ranged from 0.48 to 1.63 mM, compared to 0.078 mM for the wild type. The Km (methionine) for S-adenosyl methionine synthetase was not altered.


2013 ◽  
Vol 80 (3) ◽  
pp. 935-942 ◽  
Author(s):  
Michael B. Fisher ◽  
Kara L. Nelson

ABSTRACTSunlight inactivation ofEscherichia colihas previously been shown to accelerate in the presence of oxygen, exogenously added hydrogen peroxide, and bioavailable forms of exogenously added iron. In this study, mutants unable to effectively scavenge hydrogen peroxide or superoxide were found to be more sensitive to polychromatic simulated sunlight (without UVB wavelengths) than wild-type cells, while wild-type cells grown under low-iron conditions were less sensitive than cells grown in the presence of abundant iron. Furthermore, prior exposure to simulated sunlight was found to sensitize cells to subsequent hydrogen peroxide exposure in the dark, but this effect was attenuated for cells grown with low iron. Mutants deficient in recombination DNA repair were sensitized to simulated sunlight (without UVB wavelengths), but growth in the presence of iron chelators reduced the degree of sensitization conferred by this mutation. These findings support the hypothesis that hydrogen peroxide, superoxide, and intracellular iron all participate in the photoinactivation ofE. coliand further suggest that the inactivation rate of enteric bacteria in the environment may be strongly dependent on iron availability and growth conditions.


2006 ◽  
Vol 74 (4) ◽  
pp. 2233-2244 ◽  
Author(s):  
Alison S. Low ◽  
Francis Dziva ◽  
Alfredo G. Torres ◽  
Jessenya L. Martinez ◽  
Tracy Rosser ◽  
...  

ABSTRACT Recent transposon mutagenesis studies with two enterohemorrhagic Escherichia coli (EHEC) strains, a sero- type O26:H- strain and a serotype O157:H7 strain, led to identification of a putative fimbrial operon that promotes colonization of young calves (1 to 2 weeks old). The distribution of the gene encoding the major fimbrial subunit present in O-island 61 of EHEC O157:H7 in a characterized set of 78 diarrheagenic E. coli strains was determined, and this gene was found in 87.2% of the strains and is therefore not an EHEC-specific region. The cluster was amplified by long-range PCR and cloned into the inducible expression vector pBAD18. Induced expression in E. coli K-12 led to production of fimbriae, as demonstrated by transmission electron microscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The fimbriae were purified, and sera to the purified major subunit were raised and used to demonstrate expression from wild-type E. coli O157:H7 strains. Induced expression of the fimbriae, designated F9 fimbriae, was used to characterize binding to bovine epithelial cells, bovine gastrointestinal tissue explants, and extracellular matrix components. The fimbriae promoted increases in the levels of E. coli K-12 binding only to bovine epithelial cells. In contrast, induced expression of F9 fimbriae in E. coli O157:H7 significantly reduced adherence of the bacteria to bovine gastrointestinal explant tissue. This may have been due to physical hindrance of type III secretion-dependent attachment. The main F9 subunit gene was deleted in E. coli O157:H7, and the resulting mutant was compared with the wild-type strain for colonization in weaned cattle. While the shedding levels of the mutant were reduced, the animals were still colonized at the terminal rectum, indicating that the adhesin is not responsible for the rectal tropism observed but may contribute to colonization at other sites, as demonstrated previously with very young animals.


Sign in / Sign up

Export Citation Format

Share Document