Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation

Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2209-2220 ◽  
Author(s):  
Florence Saint-Prix ◽  
Linda Bönquist ◽  
Sylvie Dequin

In Saccharomyces cerevisiae, acetate is formed by acetaldehyde dehydrogenase (ACDH), a key enzyme of the pyruvate dehydrogenase (PDH) bypass, which fulfils the essential task of generating acetyl-CoA in the cytosol. The role of the five members of the ACDH family (ALD genes) was investigated during anaerobic growth on glucose. Single and multiple aldΔ mutants were generated in the wine-yeast-derived V5 and laboratory CEN.PK strains and analysed under standard (YPD 5 % glucose) and wine (MS 20 % glucose) fermentation conditions. The deletion of ALD6 and ALD5 decreased acetate formation in both strains, demonstrating for the first time that the mitochondrial Ald5p isoform is involved in the biosynthesis of acetate during anaerobic growth on glucose. Acetate production of the ald4Δ mutant was slightly decreased in the CEN.PK strain during growth on YPD only. In contrast, the deletion of ALD2 or ALD3 had no effect on acetate production. The absence of Ald6p was compensated by the mitochondrial isoforms and this involves the transcriptional activation of ALD4. Consistent with this, growth retardation was observed in ald6Δald4Δ, and this effect was amplified by the additional deletion of ALD5. A aldΔ null mutant, devoid of ACDH activity, was viable and produced similar levels of acetate to the ald6Δald4Δald5Δ strain, excluding a role of Ald2p and Ald3p. Thus, acetate is mainly produced by the cytosolic PDH bypass via Ald6p and by a mitochondrial route involving Ald5p. An unknown alternative pathway can compensate for the loss of Ald6p, Ald4p and Ald5p.

2000 ◽  
Vol 66 (8) ◽  
pp. 3151-3159 ◽  
Author(s):  
Fabienne Remize ◽  
Emilie Andrieu ◽  
Sylvie Dequin

ABSTRACT Acetic acid plays a crucial role in the organoleptic balance of many fermented products. We have investigated the factors controlling the production of acetate by Saccharomyces cerevisiaeduring alcoholic fermentation by metabolic engineering of the enzymatic steps involved in its formation and its utilization. The impact of reduced pyruvate decarboxylase (PDC), limited acetaldehyde dehydrogenase (ACDH), or increased acetoacetyl coenzyme A synthetase (ACS) levels in a strain derived from a wine yeast strain was studied during alcoholic fermentation. In the strain with the PDC1gene deleted exhibiting 25% of the PDC activity of the wild type, no significant differences were observed in the acetate yield or in the amounts of secondary metabolites formed. A strain overexpressingACS2 and displaying a four- to sevenfold increase in ACS activity did not produce reduced acetate levels. In contrast, strains with one or two disrupted copies of ALD6, encoding the cytosolic Mg2+-activated NADP-dependent ACDH and exhibiting 60 and 30% of wild-type ACDH activity, showed a substantial decrease in acetate yield (the acetate production was 75 and 40% of wild-type production, respectively). This decrease was associated with a rerouting of carbon flux towards the formation of glycerol, succinate, and butanediol. The deletion of ALD4, encoding the mitochondrial K+-activated NAD(P)-linked ACDH, had no effect on the amount of acetate formed. In contrast, a strain lacking both Ald6p and Ald4p exhibited a long delay in growth and acetate production, suggesting that Ald4p can partially replace the Ald6p isoform. Moreover, the ald6 ald4 double mutant was still able to ferment large amounts of sugar and to produce acetate, suggesting the contribution of another member(s) of the ALDfamily.


1997 ◽  
Vol 17 (4) ◽  
pp. 1768-1775 ◽  
Author(s):  
I Treich ◽  
M Carlson

The Saccharomyces cerevisiae Swi/Snf complex has a role in remodeling chromatin structure to facilitate transcriptional activation. The complex has 11 components, including Swi1/Adr6, Swi2/Snf2, Swi3, Snf5, Snf6, Snf11, Swp73/Snf12, and Tfg3. Mammalian homologs of these proteins have been shown to form multiple Swi/Snf-related complexes. Here we characterize an S. cerevisiae Swi3 homolog (Swh3) and present evidence that it associates in a complex with a Snf2 homolog, Sthl. We identified Swh3 as a protein that interacts with the N terminus of Snf2 in the two-hybrid system. Swh3 and Swi3 are functionally distinct, and overexpression of one does not compensate for loss of the other. Swh3 is essential for viability and does not activate transcription of reporters. The Snf2 sequence that interacts with Swh3 was mapped to a region conserved in Sth1. We show that Swh3 and Sth1 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. We also map interactions between Swh3 and Sth1 and examine the role of a leucine zipper motif in self-association of Swh3. These findings, together with previous analysis of Sth1, indicate that Swh3 and Sth1 are associated in a complex that is functionally distinct from the Swi/Snf complex and essential for viability.


2001 ◽  
Vol 183 (17) ◽  
pp. 4950-4957 ◽  
Author(s):  
Kristen Jensen-Pergakes ◽  
Zhongmin Guo ◽  
Mara Giattina ◽  
Stephen L. Sturley ◽  
Martin Bard

ABSTRACT Saccharomyces cerevisiae transcribes two genes,ARE1 and ARE2, that contribute disproportionately to the esterification of sterols. Are2p is the major enzyme isoform in a wild-type cell growing aerobically. This likely results from a combination of differential transcription initiation and transcript stability. By using ARE1 andARE2 promoter fusions to lacZ reporters, we demonstrated that transcriptional initiation from theARE1 promoter is significantly reduced compared to that from the ARE2 promoter. Furthermore, the half-life of the ARE2 mRNA is approximately 12 times as long as that of the ARE1 transcript. We present evidence that the primary role of the minor sterol esterification isoform encoded byARE1 is to esterify sterol intermediates, whereas the role of the ARE2 enzyme is to esterify ergosterol, the end product of the pathway. Accordingly, the ARE1promoter is upregulated in strains that accumulate ergosterol precursors. Furthermore, ARE1 and ARE2are oppositely regulated by heme. Under heme-deficient growth conditions, ARE1 was upregulated fivefold whileARE2 was down-regulated. ARE2 requires the HAP1 transcription factor for optimal expression, and both ARE genes are derepressed in arox1 (repressor of oxygen) mutant genetic background. We further report that the ARE genes are not subject to end product inhibition; neither ARE1 nor ARE2transcription is altered in an are mutant background, nor does overexpression of either ARE gene alter the response of the ARE-lacZ reporter constructs. Our observations are consistent with an important physiological role for Are1p during anaerobic growth when heme is limiting and sterol precursors may accumulate. Conversely, Are2p is optimally required during aerobiosis when ergosterol is plentiful.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Callum J. O’Kane ◽  
Edel M. Hyland

Abstract Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) are two of the most recognised and well-studied model systems for epigenetic regulation and the inheritance of chromatin states. Their silent loci serve as a proxy for heterochromatic chromatin in higher eukaryotes, and as such both species have provided a wealth of information on the mechanisms behind the establishment and maintenance of epigenetic states, not only in yeast, but in higher eukaryotes. This review focuses specifically on the role of histone modifications in governing telomeric silencing in S. cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that exemplify epigenetic inheritance. We discuss the recent advancements that for the first time provide a mechanistic understanding of how heterochromatin, dictated by histone modifications specifically, is preserved during S-phase. We also discuss the current state of our understanding of yeast nucleosome dynamics during DNA replication, an essential component in delineating the contribution of histone modifications to epigenetic inheritance.


2008 ◽  
Vol 28 (8) ◽  
pp. 2840-2849 ◽  
Author(s):  
Wendy Walter ◽  
David Clynes ◽  
Yong Tang ◽  
Ronen Marmorstein ◽  
Jane Mellor ◽  
...  

ABSTRACT Histone modifications occur in precise patterns and are proposed to signal the recruitment of effector molecules that profoundly impact chromatin structure, gene regulation, and cell cycle events. The linked modifications serine 10 phosphorylation and lysine 14 acetylation on histone H3 (H3S10phK14ac), modifications conserved from Saccharomyces cerevisiae to humans, are crucial for transcriptional activation of many genes. However, the mechanism of H3S10phK14ac involvement in these processes is unclear. To shed light on the role of this dual modification, we utilized H3 peptide affinity assays to identify H3S10phK14ac-interacting proteins. We found that the interaction of the known phospho-binding 14-3-3 proteins with H3 is dependent on the presence of both of these marks, not just phosphorylation alone. This is true of mammalian 14-3-3 proteins as well as the yeast homologues Bmh1 and Bmh2. The importance of acetylation in this interaction is also seen in vivo, where K14 acetylation is required for optimal Bmh1 recruitment to the GAL1 promoter during transcriptional activation.


2004 ◽  
Vol 70 (9) ◽  
pp. 5323-5330 ◽  
Author(s):  
Karin Elbing ◽  
Christer Larsson ◽  
Roslyn M. Bill ◽  
Eva Albers ◽  
Jacky L. Snoep ◽  
...  

ABSTRACT The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.


2005 ◽  
Vol 16 (8) ◽  
pp. 3632-3641 ◽  
Author(s):  
Bianca Maria Scicchitano ◽  
Lucia Spath ◽  
Antonio Musarò ◽  
Mario Molinaro ◽  
Nadia Rosenthal ◽  
...  

Arg8-vasopressin (AVP) promotes the differentiation of myogenic cell lines and mouse primary satellite cells by mechanisms involving the transcriptional activation of myogenic bHLH regulatory factors and myocyte enhancer factor 2 (MEF2). We here report that AVP treatment of L6 cells results in the activation of calcineurin-dependent differentiation, increased expression of MEF2 and GATA2, and nuclear translocation of the calcineurin target NFATc1. Interaction of these three factors occurs at MEF2 sites of muscle specific genes. The different kinetics of AVP-dependent expression of early (myogenin) and late (MCK) muscle-specific genes correlate with different acetylation levels of histones at their MEF2 sites. The cooperative role of calcineurin and Ca2+/calmodulin-dependent kinase (CaMK) in AVP-dependent differentiation is demonstrated by the effect of inhibitors of the two pathways. We show here, for the first time, that AVP, a “novel” myogenesis promoting factor, activates both the calcineurin and the CaMK pathways, whose combined activation leads to the formation of multifactor complexes and is required for the full expression of the differentiated phenotype. Although MEF2–NFATc1 complexes appear to regulate the expression of an early muscle-specific gene product (myogenin), the activation of late muscle-specific gene expression (MCK) involves the formation of complexes including GATA2.


Sign in / Sign up

Export Citation Format

Share Document