scholarly journals Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions

2005 ◽  
Vol 86 (10) ◽  
pp. 2799-2806 ◽  
Author(s):  
Vance P. Lochridge ◽  
Kathryn L. Jutila ◽  
Joel W. Graff ◽  
Michele E. Hardy

Noroviruses cause the majority of epidemic outbreaks of acute viral gastroenteritis worldwide. Human norovirus strains do not grow in cell culture, but recent carbohydrate binding, sequence and structural analyses have begun to define functional domains in the norovirus capsid that may be conserved among multiple antigenic types. The purpose of this study was to localize domains and define sequences in the major capsid protein VP1 that are important for cell interactions. Monoclonal antibodies to genogroups GI.1 and GII.2 reference strains Norwalk virus and Snow Mountain virus, respectively, were generated that blocked binding of recombinant virus-like particles to Caco-2 intestinal cells and inhibited haemagglutination. Peptides that mimicked the mAb binding epitopes were selected from a phage-displayed random nonapeptide library. Anti-recombinant Norwalk virus mAb 54.6 and anti-recombinant Snow Mountain virus mAb 61.21 recognized epitopes located in the protruding P2 domain of VP1. The epitope recognized by mAb 61.21 contained amino acids that are completely conserved among norovirus strains across genogroups, including strains isolated from swine, bovine and murine species. This study identifies the first epitope involved in inhibition of norovirus–cell interactions and supports increasing evidence that interactions between noroviruses and host cells rely on structures in the P2 domain of VP1.

2007 ◽  
Vol 81 (22) ◽  
pp. 12316-12322 ◽  
Author(s):  
Vance P. Lochridge ◽  
Michele E. Hardy

ABSTRACT Noroviruses cause epidemic outbreaks of acute viral gastroenteritis worldwide, and the number of reported outbreaks is increasing. Human norovirus strains do not grow in cell culture. However, murine norovirus (MNV) replicates in the RAW 264.7 macrophage cell line and thus provides a tractable model to investigate norovirus interactions with host cells. Epitopes recognized by monoclonal antibodies (MAbs) against the human norovirus strains Norwalk virus and Snow Mountain virus (SMV) identified regions in the P domain of major capsid protein VP1 important for interactions with putative cellular receptors. To determine if there was a relationship between domains of MNV VP1 and VP1 of human norovirus strains involved in cell binding, epitope mapping by phage display was performed with an MNV-1-neutralizing MAb, A6.2.1. A consensus peptide, GWWEDHGQL, was derived from 20 third-round phage clones. A synthetic peptide containing this sequence and constrained through a disulfide linkage reacted strongly with the A6.2.1 MAb, whereas the linear sequence did not. Four residues in the A6.2.1-selected peptide, G327, G333, Q334, and L335, aligned with amino acid residues in the P2 domain of MNV-1 VP1. This sequence is immediately adjacent to the epitope recognized by anti-SMV MAb 61.21. Neutralization escape mutants selected with MAb A6.2.1 contained a leucine-to-phenylalanine substitution at position 386 in the P2 domain. The predicted location of these residues on VP1 suggests that the phage peptide and the mutation in the neutralization-resistant viruses may be in close proximity to each other and to residues reported to be important for carbohydrate binding to VP1 of human norovirus strains.


2020 ◽  
Vol 21 (11) ◽  
pp. 1085-1096 ◽  
Author(s):  
Rajesh Kumar Gupta ◽  
Girish R. Apte ◽  
Kiran Bharat Lokhande ◽  
Satyendra Mishra ◽  
Jayanta K. Pal

: With the emergence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the whole world is suffering from atypical pneumonia, which resulted in more than 559,047 deaths worldwide. In this time of crisis and urgency, the only hope comes from new candidate vaccines and potential antivirals. However, formulating new vaccines and synthesizing new antivirals are a laborious task. Therefore, considering the high infection rate and mortality due to COVID-19, utilization of previous information, and repurposing of existing drugs against valid viral targets have emerged as a novel drug discovery approach in this challenging time. The transmembrane spike (S) glycoprotein of coronaviruses (CoVs), which facilitates the virus’s entry into the host cells, exists in a homotrimeric form and is covered with N-linked glycans. S glycoprotein is known as the main target of antibodies having neutralizing potency and is also considered as an attractive target for therapeutic or vaccine development. Similarly, targeting of N-linked glycans of S glycoprotein envelope of CoV via carbohydrate-binding agents (CBAs) could serve as an attractive therapeutic approach for developing novel antivirals. CBAs from natural sources like lectins from plants, marine algae and prokaryotes and lectin mimics like Pradimicin-A (PRM-A) have shown antiviral activities against CoV and other enveloped viruses. However, the potential use of CBAs specifically lectins was limited due to unfavorable responses like immunogenicity, mitogenicity, hemagglutination, inflammatory activity, cellular toxicity, etc. Here, we reviewed the current scenario of CBAs as antivirals against CoVs, presented strategies to improve the efficacy of CBAs against CoVs; and studied the molecular interactions between CBAs (lectins and PRM-A) with Man9 by molecular docking for potential repurposing against CoVs in general, and SARSCoV- 2, in particular.


1998 ◽  
Vol 42 (11) ◽  
pp. 2870-2876 ◽  
Author(s):  
P. Christian Lück ◽  
Jürgen W. Schmitt ◽  
Arne Hengerer ◽  
Jürgen H. Helbig

ABSTRACT We determined the MICs of ampicillin, ciprofloxacin, erythromycin, imipenem, and rifampin for two clinical isolates of Legionella pneumophila serogroup 1 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and by quantitative culture. To test the influence of subinhibitory concentrations (sub-MICs) of antimicrobial agents on Legionella uptake into Acanthamoeba castellanii and U937 macrophage-like cells, both strains were pretreated with 0.25 MICs of the antibiotics for 24 h. In comparison to that for the untreated control, subinhibitory concentrations of antibiotics significantly reducedLegionella uptake into the host cells. Measurement of the binding of monoclonal antibodies against several Legionellaantigens by enzyme-linked immunoassays indicated that sub-MIC antibiotic treatment reduced the expression of the macrophage infectivity potentiator protein (Mip), the Hsp 60 protein, the outer membrane protein (OmpM), an as-yet-uncharacterized protein of 55 kDa, and a few lipopolysaccharide (LPS) epitopes. In contrast, the expression of some LPS epitopes recognized by monoclonal antibodies 8/5 and 30/4 as well as a 45-kDa protein, a 58-kDa protein, and the major outer membrane protein (OmpS) remained unaffected.


2008 ◽  
Vol 83 (3) ◽  
pp. 1350-1358 ◽  
Author(s):  
Mengxi Jiang ◽  
Johanna R. Abend ◽  
Billy Tsai ◽  
Michael J. Imperiale

ABSTRACT BK virus (BKV) is a nonenveloped, ubiquitous human polyomavirus that establishes a persistent infection in healthy individuals. It can be reactivated, however, in immunosuppressed patients and cause severe diseases, including polyomavirus nephropathy. The entry and disassembly mechanisms of BKV are not well defined. In this report, we characterized several early events during BKV infection in primary human renal proximal tubule epithelial (RPTE) cells, which are natural host cells for BKV. Our results demonstrate that BKV infection in RPTE cells involves an acidic environment relatively early during entry, followed by transport along the microtubule network to reach the endoplasmic reticulum (ER). A distinct disulfide bond isomerization and cleavage pattern of the major capsid protein VP1 was observed, which was also influenced by alterations in pH and disruption of trafficking to the ER. A dominant negative form of Derlin-1, an ER protein required for retro-translocation of certain misfolded proteins, inhibited BKV infection. Consistent with this, we detected an interaction between Derlin-1 and VP1. Finally, we show that proteasome function is also linked to BKV infection and capsid rearrangement. These results indicate that BKV early entry and disassembly are highly regulated processes involving multiple cellular components.


1985 ◽  
Vol 48 (9) ◽  
pp. 815-823 ◽  
Author(s):  
GARY P. RICHARDS

Outbreaks of hepatitis A, Norwalk illness, and nonspecific viral gastroenteritis are associated with consumption of sewage-contaminated shellfish. Over 100 outbreaks have been reported in the United States during the past 50 years. Reported cases of shellfish-associated enteric virus illness are on the increase, whereas bacterial illness from shellfish is on the decline. As yet, there are no procedures for detecting hepatitis A virus, Norwalk virus and numerous other pathogenic viruses in environmental samples, but virus extraction and assay procedures for water and shellfish are available for the more easily cultivated enteric viruses. Current standards rely on bacterial indicators as a means to evaluate the sanitary quality of shellfish and their growing waters, but the adequacy of using bacteria as indicators of possible virus contamination is questionable. The feasibility of employing enteroviruses or rotaviruses as possible viral indiators is discussed. It is proposed that easily cultivated enteroviruses, such as poliovirus, be used as an interim indicator for the possible presence of human pathogenic viruses in seafoods, with the subsequent formulation of guidelines to limit the levels of virus contamination in shellfish.


2018 ◽  
Author(s):  
Michaela Conley ◽  
Marion McElwee ◽  
Liyana Azmi ◽  
Mads Gabrielsen ◽  
Olwyn Byron ◽  
...  

AbstractTo initiate the infectious process, many viruses enter their host cells by triggering endocytosis following receptor engagement. The mechanism by which non-enveloped viruses, such as the caliciviruses, escape the endosome is however poorly understood. TheCaliciviridaeinclude many important human and animal pathogens, most notably norovirus, the cause of winter vomiting disease. Here we show that VP2, a minor capsid protein encoded by all caliciviruses, forms a large portal assembly at a unique three-fold symmetry axis following receptor engagement. This feature surrounds an open pore in the capsid shell. We hypothesise that the VP2 portal complex is the means by which the virus escapes the endosome, pene-trating the endosomal membrane to release the viral genome into the cytoplasm. Cryogenic electron microscopy (cryoEM) and asymmetric reconstruction were used to investigate structural changes in the capsid of feline calicivirus (FCV) that occur when the virus binds to its cellular receptor junctional adhesion molecule-A (fJAM-A). Near atomic-resolution structures were calculated for the native virion alone and decorated with soluble receptor fragments. We present atomic models of the major capsid protein VP1 in the presence and absence of fJAM-A, revealing the contact interface and conformational changes brought about by the interaction. Furthermore, we have calculated an atomic model of the portal protein VP2 and revealed the structural changes in VP1 that lead to pore formation. While VP2 was known to be critical for the production of infectious virus, its function has been hitherto undetermined. Our finding that VP2 assembles a portal that is likely responsible for endosome escape represents a major step forward in our understanding of both theCaliciviridaeand icosahedral RNA containing viruses in general.


1994 ◽  
Vol 40 (10) ◽  
pp. 865-872 ◽  
Author(s):  
Frank C. Gibson III ◽  
Arthur O. Tzianabos ◽  
Frank G. Rodgers

In the absence of serum, Legionella pneumophila demonstrated wash-resistant adherence to U-937 cells, primary guinea-pig alveolar macrophages, and MRC-5 cells. Neither complement nor antibody was required for binding. The dynamics of adherence following inoculation of L. pneumophila at increasing 10-fold multiplicities of infection to each of the three host cell types resulted in a first-order kinetic relationship of binding, indicative of one bacterial adhesin molecule recognized by one host cell receptor moiety. Host cell receptor saturation studies showed that depending on the cell type, 2–8% of the bacterial inoculum adhered to cells under these nonopsonic conditions. Preliminary adhesin and receptor characterization studies were preformed to define the chemical composition of the binding structures on both the organism and the three different host cell surfaces. The adherence phenomenon was investigated using competitive binding assays in the presence of putative adhesin analogs as well as following treatments modifying the microbial and host cell surface membranes. Attachment was evaluated both by viable bacterial cell colony counts and by indirect immunofluorescent assay. With the exception of aldehyde treatments, the various membrane-modifying regimes and the presence of the adhesin analogs were shown to have no effect on organism or host cell viability. Data suggested that the L. pneumophila adhesin responsible for opsonin-independent binding to these host cells was a protein structure with lectin-like properties. Furthermore, this protein would appear to be intimately associated with carbohydrate or lipid structures located on the bacterial outer membrane. The receptor moiety present on all host cells responsible for binding L. pneumophila had properties consistent with a carbohydrate or complex saccharide structure. To evaluate the role of complement receptors as the structures necessary for L. pneumophila infection of macrophages, a battery of monoclonal antibodies were used to block the complement receptor (CR) types 1 (CD35), CR3 (CD 18, CD11b), and CR4 (CD18, CD11c). Blocking studies with CR-specific monoclonal antibodies indicated that CR1 and the integrin receptors CR3 and CR4 were not involved in the opsonin-independent binding of L. pneumophila to macrophage-like cells.Key words: Legionella, opsonin-independent attachment, bacterial adherence, complement receptors, adhesion–receptor interactions.


2021 ◽  
Author(s):  
Carl Graham ◽  
Jeffrey Seow ◽  
Isabella Huettner ◽  
Hataf Khan ◽  
Neophytos Kouphou ◽  
...  

The interaction of the SARS–CoV–2 Spike receptor binding domain (RBD) with the ACE2 receptor on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS–CoV–2 variants has revealed mutations arising in the RBD, the N–terminal domain (NTD) and S2 subunits of Spike. To fully understand how these mutations affect the antigenicity of Spike, we have isolated and characterized neutralizing antibodies targeting epitopes beyond the already identified RBD epitopes. Using recombinant Spike as a sorting bait, we isolated >100 Spike–reactive monoclonal antibodies from SARS–CoV–2 infected individuals. ≈45% showed neutralizing activity of which ≈20% were NTD–specific. None of the S2–specific antibodies showed neutralizing activity. Competition ELISA revealed that NTD–specific mAbs formed two distinct groups: the first group was highly potent against infectious virus, whereas the second was less potent and displayed glycan–dependant neutralization activity. Importantly, mutations present in B.1.1.7 Spike frequently conferred resistance to neutralization by the NTD–specific neutralizing antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes need to be considered when investigating antigenic drift in emerging variants.


1981 ◽  
Vol 44 (4) ◽  
pp. 294-296 ◽  
Author(s):  
M. J. EYLES ◽  
G. R. DAVEY ◽  
E. J. HUNTLEY

Two viruses, echovirus type 8 and a reovirus, were isolated from a batch of oysters responsible for an outbreak of gastroenteritis. Characteristics of the illness, detection of Norwalk virus in the feces of one of the victims and other factors indicated strongly that the illness was due to infection with Norwalk virus. Examination of the implicated oysters and a fecal specimen from a victim failed to provide evidence of the involvement of any other causative agent. Thus laboratory evidence of human enteric virus contamination of a batch of food responsible for a viral illness has been provided.


Sign in / Sign up

Export Citation Format

Share Document