scholarly journals Maternal Aerobic Exercise during Pregnancy Can Increase Spatial Learning by Affecting Leptin Expression on Offspring's Early and Late Period in Life Depending on Gender

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ayfer Dayi ◽  
Sinem Agilkaya ◽  
Seda Ozbal ◽  
Ferihan Cetin ◽  
Ilkay Aksu ◽  
...  

Maternal exercise during pregnancy has been suggested to exert beneficial effects on brain functions of the offspring. Leptin is an adipocytokine which is secreted from adipose tissues and has positive effects on learning, memory, and synaptic plasticity. In this study, pregnant rats were moderately exercised and we observed the effects of this aerobic exercise on their prepubertal and adult offsprings' spatial learning, hippocampal neurogenesis, and expression of leptin. All the pups whose mothers exercised during pregnancy learned the platform earlier and spent longer time in the target quadrant. Their thigmotaxis times were shorter than those measured in the control group. It is shown that hippocampal CA1, CA3 neuron numbers increased in both prepubertal and adult pups, in addition that GD neuron numbers increased in adult pups. Leptin receptor expression significantly increased in the prepubertal male, adult male, and adult female pups. In our study, maternal running during pregnancy resulted in significant increase in the expression of leptin receptor but not in prepubertal female pups, enhanced hippocampal cell survival, and improved learning memory capability in prepubertal and adult rat pups, as compared to the control group. In conclusion, maternal exercise during pregnancy may regulate spatial plasticity in the hippocampus of the offspring by increasing the expression of leptin.

2017 ◽  
Vol 114 (4) ◽  
pp. E619-E628 ◽  
Author(s):  
Chih-Ming Chen ◽  
Lauren L. Orefice ◽  
Shu-Ling Chiu ◽  
Tara A. LeGates ◽  
Samer Hattar ◽  
...  

Stability of neuronal connectivity is critical for brain functions, and morphological perturbations are associated with neurodegenerative disorders. However, how neuronal morphology is maintained in the adult brain remains poorly understood. Here, we identify Wnt5a, a member of the Wnt family of secreted morphogens, as an essential factor in maintaining dendritic architecture in the adult hippocampus and for related cognitive functions in mice. Wnt5a expression in hippocampal neurons begins postnatally, and its deletion attenuated CaMKII and Rac1 activity, reduced GluN1 glutamate receptor expression, and impaired synaptic plasticity and spatial learning and memory in 3-mo-old mice. With increased age, Wnt5a loss caused progressive attrition of dendrite arbors and spines in Cornu Ammonis (CA)1 pyramidal neurons and exacerbated behavioral defects. Wnt5a functions cell-autonomously to maintain CA1 dendrites, and exogenous Wnt5a expression corrected structural anomalies even at late-adult stages. These findings reveal a maintenance factor in the adult brain, and highlight a trophic pathway that can be targeted to ameliorate dendrite loss in pathological conditions.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Yu Jin ◽  
Qiongjia Yuan

Objective Through the 4 weeks aerobic exercise intervention in rats with CUMS (chronic unpredictable mild stress) to build depression model of rats, and to explore the effects of aerobic exercise intervention on hippocampal VEGF expression and spatial learning and memorizing ability in depressive model rats. Methods 30 adult 3-month-old Sprague-Dawley rats weighing 300 ± 20 g were used. After adaptive feeding for 1 week, they were randomly divided into 3 groups: control group (C), the model group (M), and exercise group (E). M and E groups were subjected to CUMS stimulation for 4 weeks and/or aerobic exercise for 4 weeks according to different modeling procedures. After exercise or CUMS, the behavioral index was tested by sucrose preference test (SPT) and Morris water maze (MWZ). The 5-HT expression of whole brain was detected by ELISA. And Real-time PCR, Western Blotting, HE staining and immunofluorescence method test the expression of VEGF and morphological structure to change in hippocampus. Results Compared with the C group, the sucrose intake and the percentage of syrup preference were significantly decreased in the CUMS-induced depression rats, the 5-HT depression in the whole brain was significantly decreased, the hippocampal neurons were disorderly arranged and the number was less, and the hippocampal VEGF gene and protein were significantly decreased. While aerobic exercise can significantly improve the depression-like behavior, learning and memorizing ability of rats with depression, increase the expression of 5-HT in whole brain, and the hippocampal neurons are arranged neatly, clearly and in large quantities, and increase the gene and protein expression of VEGF in hippocampus. Conclusions Four weeks aerobic exercise intervention can significantly up-regulate the expression of VEGF in hippocampus and improve learning and memorizing ability and depressive symptoms. It was suggested that the increased expression of VEGF in the hippocampus may be one of the neurobiological mechanisms in depression and spatial learning and memorizing ability.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1870-P
Author(s):  
SHELLY NASON ◽  
TEAYOUN KIM ◽  
JESSICA P. ANTIPENKO ◽  
BRIAN FINAN ◽  
RICHARD DIMARCHI ◽  
...  

2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
SMM Maldonado-Martin ◽  
PC Corres ◽  
AMAB Martinezaguirre-Betolaza ◽  
BJI Jurio-Iriarte ◽  
MTE Tous-Espelosin ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public Institution(s). Main funding source(s): University of the Basque Country OnBehalf GIKAFIT PURPOSES. To analyse the change on leptin, body composition, blood pressure (BP), cardiorespiratory fitness (CRF) and some biochemical parameters in physically inactive women and men with primary hypertension (HTN) and obesity, and to evaluate the potential sex differences in the change after intervention. METHODS. Participants (n = 37 women, n= 40 men, 52.9 ± 6.9 yrs) from the EXERDIET-HTA study were randomized into attention control group (physical activity recommendations) or one of three supervised aerobic exercise groups [two days/week: high-volume (HV) with 45 min of moderate-intensity continuous training, HV and high-intensity interval training (HV-HIIT), and low volume-HIIT (LV-HIIT, 20 min)]. All participants received the same hypocaloric diet. All variables were assessed pre and post intervention (16 weeks). 24 h ambulatory BP monitoring was used to analyze systolic and diastolic BP. A cardiopulmonary exercise test was performed to determine peak oxygen uptake (VO2peak). RESULTS. Following the intervention, there were increments (P < 0.01) in CRF by VO2peak (Women, W = 21.1 ± 3.7 vs. 24.6 ± 4.4 mL·kg-1·min-1, Men, M = 26.3 ± 6.0 vs. 33.1 ± 10.2 mL·kg-1·min-1) and decreases (P < 0.05) in leptin (W = 49.5 ± 23.0 vs. 41.8 ± 19.9 ng/mL, M = 20.5 ± 14.8 vs. 12.9 ± 18.6 ng/mL), body mass (W = 84.7 ± 12.1 vs. 80.3 ± 11.5 kg, M = 97.9 ± 14.4 vs. 91.5 ± 13.3 kg), waist perimeter (W = 97.3 ± 10.7 vs. 94.3 ± 10.9 cm, M = 107.9 ± 8.7 vs. 101.5 ± 7.9 cm), fat mass (W = 42.3 ± 5.1 vs. 38.6 ± 8.4 %, M = 31.2 ± 5.0 vs. 28.0 ± 4.4 %), systolic BP (M = 136.5 ± 12.1 vs. 129.3 ± 12.5 mmHg), diastolic BP (W = 76.2 ± 8.9 vs. 74.1 ± 8.7 mmHg, M = 79.3 ± 7.2 vs. 75.0 ± 8.2 mmHg), total cholesterol (M = 216.1 ± 44.5 vs. 196.1 ± 35.0 mg/dL), insulin (W = 13.4 ± 7.9 vs. 9.4 ± 4.2 mU/L) values. There were significant between-sex differences in body mass (W=-5.2%, M=-6.5%, effect size, ES = 0.073), waist circumference (W=-3.1%, M=-5.9%, ES = 0.114), and VO2peak (W = 14.2%, M = 20.5%, ES = 0.059). CONCLUSIONS. Aerobic exercise along with hypocaloric diet is an effective non-pharmacological tool to induce beneficial changes in women and men in BP and leptin as a mediator of obesity-induced HTN, and other regulatory mechanisms such as body composition, CRF and biochemical profile. The found sex-related differences could confirm the need of individual non-pharmacological strategies.


2021 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
Kirsty Hamilton ◽  
Jenni Harvey

It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer’s disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer’s disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Song ◽  
Yaohua Chen ◽  
Cheng Chen ◽  
Lili Chen ◽  
Oumei Cheng

Abstract Purpose and background Previous studies have suggested that promoting endogenous neurogenesis has great significance for the recovery of cognitive dysfunction caused by cerebral ischemia (CI). Pharmacological inhibition of GABAB receptor can enhance neurogenesis in adult healthy and depressed mice. In the study, we intended to investigate the effects of GABAB receptor antagonists on cognitive function and hippocampal neurogenesis in mice following CI. Methods Adult mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min to induce CI and treated with CGP52432 (antagonist of GABAB receptor, CGP, 10 mg/kg intraperitoneal injection) starting 24 h after CI. The Morris water maze test was performed to test spatial learning and memory at day 28. Immunofluorescence was applied to detect neurogenesis in the DG region at day 14 and 28. In in vitro experiments, cell proliferation was detected by CCK8 and immunofluorescence, and the expression of cAMP/CREB signaling pathway-related proteins was detected by ELISA assay and Western blot. Results CGP significantly improved spatial learning and memory disorders caused by CI, and it enhanced the proliferation of neural stem cells (NSCs), the number of immature neurons, and the differentiation from newborn cells to neurons. In vitro experiments further confirmed that CGP dose-dependently enhanced the cell viability of NSCs, and immunofluorescence staining showed that CGP promoted the proliferation of NSCs. In addition, treatment with CGP increased the expression of cAMP, PKA, and pCREB in cultured NSCs. Conclusion Inhibition of GABAB receptor can effectively promote hippocampal neurogenesis and improve spatial learning and memory in adult mice following CI.


2021 ◽  
pp. 1-22
Author(s):  
Galit Yogev-Seligmann ◽  
Tamir Eisenstein ◽  
Elissa Ash ◽  
Nir Giladi ◽  
Haggai Sharon ◽  
...  

Background: Aerobic training has been shown to promote structural and functional neurocognitive plasticity in cognitively intact older adults. However, little is known about the neuroplastic potential of aerobic exercise in individuals at risk of Alzheimer’s disease (AD) and dementia. Objective: We aimed to explore the effect of aerobic exercise intervention and cardiorespiratory fitness improvement on brain and cognitive functions in older adults with amnestic mild cognitive impairment (aMCI). Methods: 27 participants with aMCI were randomized to either aerobic training (n = 13) or balance and toning (BAT) control group (n = 14) for a 16-week intervention. Pre- and post-assessments included functional MRI experiments of brain activation during associative memory encoding and neural synchronization during complex information processing, cognitive evaluation using neuropsychological tests, and cardiorespiratory fitness assessment. Results: The aerobic group demonstrated increased frontal activity during memory encoding and increased neural synchronization in higher-order cognitive regions such as the frontal cortex and temporo-parietal junction (TPJ) following the intervention. In contrast, the BAT control group demonstrated decreased brain activity during memory encoding, primarily in occipital, temporal, and parietal areas. Increases in cardiorespiratory fitness were associated with increases in brain activation in both the left inferior frontal and precentral gyri. Furthermore, changes in cardiorespiratory fitness were also correlated with changes in performance on several neuropsychological tests. Conclusion: Aerobic exercise training may result in functional plasticity of high-order cognitive areas, especially, frontal regions, among older adults at risk of AD and dementia. Furthermore, cardiorespiratory fitness may be an important mediating factor of the observed changes in neurocognitive functions.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 292
Author(s):  
Lina Zhu ◽  
Qian Yu ◽  
Fabian Herold ◽  
Boris Cheval ◽  
Xiaoxiao Dong ◽  
...  

Cardiorespiratory fitness (CRF) is assumed to exert beneficial effects on brain structure and executive control (EC) performance. However, empirical evidence of exercise-induced cognitive enhancement is not conclusive, and the role of CRF in younger adults is not fully understood. Here, we conducted a study in which healthy young adults took part in a moderate aerobic exercise intervention program for 9 weeks (exercise group; n = 48), or control condition of non-aerobic exercise intervention (waitlist control group; n = 72). Before and after the intervention period maximal oxygen uptake (VO2max) as an indicator of CRF, the Flanker task as a measure of EC performance and grey matter volume (GMV), as well as cortical thickness via structural magnetic resonance imaging (MRI), were assessed. Compared to the control group, the CRF (heart rate, p < 0.001; VO2max, p < 0.001) and EC performance (congruent and incongruent reaction time, p = 0.011, p < 0.001) of the exercise group were significantly improved after the 9-week aerobic exercise intervention. Furthermore, GMV changes in the left medial frontal gyrus increased in the exercise group, whereas they were significantly reduced in the control group. Likewise, analysis of cortical morphology revealed that the left lateral occipital cortex (LOC.L) and the left precuneus (PCUN.L) thickness were considerably increased in the exercise group, which was not observed in the control group. The exploration analysis confirmed that CRF improvements are linked to EC improvement and frontal grey matter changes. In summary, our results support the idea that regular endurance exercises are an important determinant for brain health and cognitive performance even in a cohort of younger adults.


Sign in / Sign up

Export Citation Format

Share Document