scholarly journals Human Development VI: Supracellular Morphogenesis. The Origin of Biological and Cellular Order

2006 ◽  
Vol 6 ◽  
pp. 1424-1433 ◽  
Author(s):  
Søren Ventegodt ◽  
Tyge Dahl Hermansen ◽  
Trine Flensborg-Madsen ◽  
Maj Lyck Nielsen ◽  
Joav Merrick

Uninterrupted morphogenesis shows the informational potentials of biological organisms. Experimentally disturbed morphogenesis shows the compensational dynamics of the biological informational system, which is the rich informational redundancy. In this paper, we use these data to describe morphogenesis in terms of the development of supracellular levels of the organism, and we define complex epigenesis and supracellular differentiation. We review the phenomena of regeneration and induction of Hydra and amphibians, and the higher animal’s informational needs for developing their complex nervous systems. We argue, also building on the NO-GO theorem for ontogenesis as chemistry, that the traditional chemical explanations of high-level informational events in ontogenesis, such as transmutation, regeneration, and induction, are insufficient. We analyze the informational dynamics of three embryonic compensatory reactions to different types of disturbances: (1) transmutations of the imaginal discs of insects, (2) regeneration after removal of embryonic tissue, and (3) embryonic induction, where two tissues that normally are separated experimentally are made to influence each other. We describe morphogenesis as a complex bifurcation, and the resulting morphological levels of the organism as organized in a fractal manner and supported by positional information. We suggest that some kind of real nonchemical phenomenon must be taking form in living organisms as an information-carrying dynamic fractal field, causing morhogenesis and supporting the organism’s morphology through time. We argue that only such a phenomenon that provides information-directed self-organization to the organism is able to explain the observed dynamic distribution of biological information through morphogenesis and the organism's ability to rejuvenate and heal.

2006 ◽  
Vol 6 ◽  
pp. 1434-1440 ◽  
Author(s):  
Søren Ventegodt ◽  
Tyge Dahl Hermansen ◽  
Trine Flensborg-Madsen ◽  
Erik Rald ◽  
Maj Lyck Nielsen ◽  
...  

In this paper we have made a draft of a physical fractal essence of the universe, a sketch of a new cosmology, which we believe to lay at the root of our new holistic biological paradigm. We present the fractal roomy spiraled structures and the energy-rich dancing “infinite strings” or lines of the universe that our hypothesis is based upon. The geometric language of this cosmology is symbolic and both pre-mathematical and pre-philosophical. The symbols are both text and figures, and using these we step by step explain the new model that at least to some extent is able to explain the complex informational system behind morphogenesis, ontogenesis, regeneration and healing. We suggest that it is from this highly dynamic spiraled structure that organization of cells, organs, and the wholeness of the human being including consciousness emerge. The model of ““dancing fractal spirals” carries many similarities to premodern cultures descriptions of the energy of the life and universe. Examples are the Native American shamanistic descriptions of their perception of energy and the old Indian Yogis descriptions of the life-energy within the body and outside. Similar ideas of energy and matter are found in the modern superstring theories. The model of the informational system of the organism gives new meaning to Bateson’s definition of information: “A difference that makes a difference”, and indicates how information-directed self-organization can exist on high structural levels in living organisms, giving birth to their subjectivity and consciousness.


2006 ◽  
Vol 6 ◽  
pp. 1132-1138 ◽  
Author(s):  
Søren Ventegodt ◽  
Tyge Dahl Hermansen ◽  
Trine Flensborg-Madsen ◽  
Maj Lyck Nielsen ◽  
Birgitte Clausen ◽  
...  

In this paper, restricted to describe the ontogenesis of the cell, we discuss the processing of DNA through RNA to proteins and argue that this process is not able to transfer the information necessary to organize the proteins in the cell, but only to transfer the information necessary to form the shape of the proteins. We shortly describe the structure of the information carrying field recruited by the cells that we think is responsible for building the organelles and other cellular structures. We use the cells superior control of its cytoskeleton as an example of how the cell is using an informational field giving the positional information guiding all the local chemical processes behind the cell movement. We describe the information-directed self-organization in cells and argue that this can explain the ontogenesis of the cell. We also suggest the existence of an undiscovered phenomenon behind the information transmitting cell interactions. We conclude that during evolution the cell has developed into an information-guided self-organizing structure. The mystery we want to solve is: what is the mechanical cause and nature of biological information?


Total twenty different processed meat plant producing emulsion type sausage were histologically and chemically examined for detection of adulteration with unauthorized tissues. Results revealed that samples were adulterated with different types of animal tissues included; hyaline cartilage, tendon, spongy bone, peripheral nerve trunk, basophilic matrix, lymphatic tissue, fascia, fibrocartilage and vascular tissue. Moreover, these samples were adulterated Also, adulterated with plant tissue included; plant stem, leaves and root. Chemical analysis showed a significant difference in their chemical composition (moisture, fat, protein, ash and calcium) content. Moisture and fat content varied around the permissible limit of E.S.S. while low protein, high ash and calcium content was detected in the examined samples. Therefore, Histological and chemical examinations can be used as reliable methods to detect adultration using unauthorized addition of both animal and plant tissues in processed meat product samples which revealed a high level of falsification.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Valente

AbstractImitating the transition from inanimate to living matter is a longstanding challenge. Artificial life has achieved computer programs that self-replicate, mutate, compete and evolve, but lacks self-organized hardwares akin to the self-assembly of the first living cells. Nonequilibrium thermodynamics has achieved lifelike self-organization in diverse physical systems, but has not yet met the open-ended evolution of living organisms. Here, I look for the emergence of an artificial-life code in a nonequilibrium physical system undergoing self-organization. I devise a toy model where the onset of self-replication of a quantum artificial organism (a chain of lambda systems) is owing to single-photon pulses added to a zero-temperature environment. I find that spontaneous mutations during self-replication are unavoidable in this model, due to rare but finite absorption of off-resonant photons. I also show that the replication probability is proportional to the absorbed work from the photon, thereby fulfilling a dissipative adaptation (a thermodynamic mechanism underlying lifelike self-organization). These results hint at self-replication as the scenario where dissipative adaptation (pointing towards convergence) coexists with open-ended evolution (pointing towards divergence).


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yizhe Wang ◽  
Cunqian Feng ◽  
Yongshun Zhang ◽  
Sisan He

Precession is a common micromotion form of space targets, introducing additional micro-Doppler (m-D) modulation into the radar echo. Effective classification of space targets is of great significance for further micromotion parameter extraction and identification. Feature extraction is a key step during the classification process, largely influencing the final classification performance. This paper presents two methods for classifying different types of space precession targets from the HRRPs. We first establish the precession model of space targets and analyze the scattering characteristics and then compute electromagnetic data of the cone target, cone-cylinder target, and cone-cylinder-flare target. Experimental results demonstrate that the support vector machine (SVM) using histograms of oriented gradient (HOG) features achieves a good result, whereas the deep convolutional neural network (DCNN) obtains a higher classification accuracy. DCNN combines the feature extractor and the classifier itself to automatically mine the high-level signatures of HRRPs through a training process. Besides, the efficiency of the two classification processes are compared using the same dataset.


2014 ◽  
Vol 112 (6) ◽  
pp. 1584-1598 ◽  
Author(s):  
Marino Pagan ◽  
Nicole C. Rust

The responses of high-level neurons tend to be mixtures of many different types of signals. While this diversity is thought to allow for flexible neural processing, it presents a challenge for understanding how neural responses relate to task performance and to neural computation. To address these challenges, we have developed a new method to parse the responses of individual neurons into weighted sums of intuitive signal components. Our method computes the weights by projecting a neuron's responses onto a predefined orthonormal basis. Once determined, these weights can be combined into measures of signal modulation; however, in their raw form these signal modulation measures are biased by noise. Here we introduce and evaluate two methods for correcting this bias, and we report that an analytically derived approach produces performance that is robust and superior to a bootstrap procedure. Using neural data recorded from inferotemporal cortex and perirhinal cortex as monkeys performed a delayed-match-to-sample target search task, we demonstrate how the method can be used to quantify the amounts of task-relevant signals in heterogeneous neural populations. We also demonstrate how these intuitive quantifications of signal modulation can be related to single-neuron measures of task performance ( d′).


2021 ◽  
Vol 54 ◽  
pp. 124-129
Author(s):  
Martin Krockert ◽  
Marvin Matthes ◽  
Torsten Munkelt

Author(s):  
LE THANH HA ◽  
HOANG PHUONG DUNG ◽  
PHAM HONG CHUONG ◽  
TO TRUNG THANH

This paper investigates the effects of global economic sanctions (GESs) on global bank linkages (GBLs) by using 4,032 pairs of 66 countries during the 2001–2013 period. We use the structural gravity model combining with the rich database of the Global Sanction Data Base introduced by Felbermayr et al. [(2020). The global sanctions data base. European Economic Review, 129, 1–23]. Our empirical results show a negative association between the GESs and GBLs. The differential effects of GESs on the GBLs are conditional on the sanction types. Furthermore, the consequences of global sanctions become more severe for countries featuring higher information asymmetries, captured either by a high level of world uncertainty, an occurrence of crisis and shocks or by a weak institutional system. Our results are robust and reliable when we use an alternative measure of bank connections, and in the context of controlling the potential endogeneity of global sanction.


Author(s):  
Konstantinos Apostoleris ◽  
Basil Psarianos ◽  
Ioannis-Alexandros Choupas ◽  
Vassilios Matragos

Skew superelevation has proven to be an efficient pavement constructional measure to address hydroplaning phenomena under specific critical superelevation runoff designs. However, this technique has raised concerns about user’s comfort when driving over the skewed edge of the pavement, especially for heavy vehicles and when the traveling speed is higher than the design speed. This paper aims to evaluate the driving comfort outcome on an improved skew superelevation design, where a rounding of the skew edge has been applied. This is achieved through the use of a simulation program which examines the vehicle and driver behavior when passing over it. The simulation program estimates many parameters including the lateral and vertical accelerations ( Gy and Gz) imposed on both elements, the vehicle and the driver. This evaluation is made for different alignment designs provided in the freeway design and for a broad range of especially high velocities ranging from 80 to 160 km/h (50–100 mph), as well as for different types of heavy vehicles. Also, the influence on the above parameters has been investigated in respect of the distance between two consecutive skew superelevations, concerning cases of entering and exiting a simple, low-length curve. The outcomes are classified in order to evaluate their variability as affected by each parameter change (speed, geometry, vehicle). Simulation results are compared with thresholds, as provided in the international literature, to ensure driver comfort and a high level of road safety.


Sign in / Sign up

Export Citation Format

Share Document