scholarly journals A new insight for the screening of potential β-lactamase inhibitors

2014 ◽  
Author(s):  
Vijai Singh ◽  
Dharmendra Kumar Chaudhary

The β-lactamase produces by Aeromonas hydrophila which enables to hydrolyze and inactivate β-lactam ring of antibiotics. The homology modeling was used to generate the 3-D model of β-lactamase by using known template 3-D structure. The stereochemical quality and torsion angle of 3-D model were validated. Total eleven effective drugs have been selected and targeted the active amino acid residues in β-lactamase. The drugs were derivative of β-lactam ring antibiotics and screening was made by docking. Out of 11 drugs, 3 drugs (Ampicillin, Astreonam and Sultamicillin) were found to be more potent on the basis of robust binding energy between protein-drug interactions. Additionally, homology of β-lactamase of A. hydrophila resembled with other pathogenic bacteria that used for phylogeny analysis. These findings suggest a new insight for better understanding and useful for designing of novel potent drugs.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Olivia Nathalia ◽  
Diana Elizabeth Waturangi

Abstract Objective The objective of this research were to screen quorum quenching activity compound from phyllosphere bacteria as well as antibiofilm activity against several fish pathogen bacteria such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. Results We found eight phyllosphere bacteria isolates with potential quorum quenching activity to inhibit Chromobacterium violaceum as indicator bacteria. Crude extracts (20 mg/mL) showed various antibiofilm activity against fish pathogenic bacteria used in this study. Isolate JB 17B showed the highest activity to inhibit biofilm formation of A. hydrophila and V. harveyi, meanwhile isolate JB 3B showed the highest activity to inhibit biofilm of S. agalactiae. From destruction assay, isolate JB 8F showed the highest activity to disrupt biofilm of A. hydrophila isolate JB 20B showed the highest activity to disrupt biofilm of V. harveyi, isolate JB 17B also showed the highest activity to disrupt biofilm of S. agalactiae.



Author(s):  
Alfabetian Harjuno Condro Haditomo ◽  
Angela Mariana Lusiastuti ◽  
Widanarni Widanarni

ABSTRAK   Pengendalian penyakit bakterial yang umum dilakukan dengan pemakaian antibiotik atau  bahan kimia sudah tidak diperbolehkan lagi karena menimbulkan patogen yang resisten  terhadap bahan kimia tersebut, terlebih jika penggunaan tidak sesuai dengan anjuran yang diberikan. Dampak negatif terhadap kesehatan konsumen berupa residu antibiotik juga menjadi pertimbangan yang harus diperhatikan. Manipulasi terhadap populasi mikroba yang berada di perairan guna pencegahan sebelum terjadinya serangan bakteri yang bersifat mematikan perlu dilakukan sebagaimana konsep probiotik sebagai biokontrol. Tujuan penelitian ini adalah menguji kandidat probiotik dalam menekan atau menghambat bakteri patogen Aeromonas hydrophila. Penelitian ini dilaksananakan dalam dua tahap. Tahap pertama adalah tahap pengujian bakteri kandidat probiotik secara in vitro menggunakan metode zona hambat dan kultur bersama pada media agar.  Tahap kedua adalah uji tentang bakteri kandidat probiotik dengan patogen pada media budidaya. Hasil terbaik penelitian tahap pertama pada  uji kultur bersama antara kandidat probiotik B. firmus dengan A. hydrophila pada skala in vitro adalah dengan penambahan probiotik  B. firmus sebanyak 108 cfu/ml. Sedangkan pada penelitian tahap kedua didapatkan hasil berturut-turut perlakuan D dengan tingkat kelangsungan hidup (SR) mencapai 90%, perlakuan C dengan SR 75%, perlakuan A dengan SR 50% dan perlakuan K dengan SR 50%.   Kata kunci: Bacillus firmus, probiotik, Aeromonas hydrophila, media budidaya   ABSTRACT  Controlling bacterial disease with the use of antibiotics or chemicals is no longer allowed as it results in pathogens that are resistant to the chemicals, especially when not in accordance with the recommendations provided. The negative impactsof the antibiotics residues on the consumers’ health  also need to be considered. Manipulation of microbial populations present in the waters as preventation before the lethal attack of bacteria needs to be done which is in accordance with the concept of probiotics as biocontrol.The purpose of this study was to test the probiotic candidates in suppressing or inhibiting pathogenic bacteria Aeromonas hydrophila. This study was conducted in two stages. The first stage was to test a candidate probiotic bacteria in vitro using culture methods and inhibition zone on the media together. The second stage wasto test candidate probiotic bacteria to pathogens on the cultivation media. The best results in the first phase of the research is shared culture test between probiotic candidate B. FIRMUS with A. hydrophila on vitro scale is the addition of the probiotic B. FIRMUS 108 cfu / ml. While in the second phase of the research results obtained successively: treatment D with a survival rate (SR) reaches 90%, treatment C with SR 75%, treatment A with SR 50% and treatment K with SR 50%. Keywords: Bacillus FIRMUS, probiotics, Aeromonas hydrophila, media cultivation



Gene ◽  
1995 ◽  
Vol 156 (1) ◽  
pp. 79-83 ◽  
Author(s):  
M.R. Ferguson ◽  
Xin-Jing Xu ◽  
C.W. Houston ◽  
J.W. Peterson ◽  
A.K. Chopra


2019 ◽  
Vol 120 ◽  
pp. 61-68 ◽  
Author(s):  
Ulrike Brandt ◽  
Gulsina Galant ◽  
Christina Meinert-Berning ◽  
Alexander Steinbüchel


2014 ◽  
Vol 2 (1) ◽  
pp. 28-34
Author(s):  
K Yadav ◽  
S Prakash ◽  
RC Serayi ◽  
T Shilpkar ◽  
S Shrestha

Background and objectives: Urinary tract infection (UTI) is associated with multiplication of organisms in urinary tract and is defined by the presence of more than 105 organisms per ml in a midstream sample of urine (MSU). UTI is most commonly acquired bacterial infection in ambulatory and hospitalized populations. E.coli is the most predominant organism to colonise the urethral meatus and perineum before ascending to the bladder. Drug resistance of pathogens is a serious medical problem, because of very fast arise and spread of mutant strains that are insusceptible to medical treatment of UTI. Therefore, this study was carried out to determine the common pathogenic bacteria causing UTI and to determine their antibiotic susceptibility pattern. Material and Methods: Mid stream urine samples of the UTI suspected pateints were collected in the Mid Stream Urine (MSU) samples were collected in the sterile clean dry wide mouthed bottle. Standard protocol was followed to isolate and identify organism which was followed by disc diffusion antibiotic sensitivity tests. Results: A total of 100 samples were collected. Out of 100 samples, 25 samples showed a significant growth E.coli, Citrobacter diversus, Klebsiella pneumoniae, Staphylococcus aureus were isolated. E.coli (84%) was found to be the most prevalent causing UTI. Conclusion: UTI was found more common in female than male and E.coli was found to be main causes of UTI. Ciprofloxacin showed more effective drugs in the treatment of UTI. DOI: http://dx.doi.org/10.3126/jmcjms.v2i1.11393   Janaki Medical College Journal of Medical Sciences (2014) Vol. 2 (1): 28-34



2009 ◽  
Vol 72 (3) ◽  
pp. 524-530 ◽  
Author(s):  
TOMOMI HATA ◽  
MELAKU ALEMU ◽  
MIHO KOBAYASHI ◽  
CHISE SUZUKI ◽  
SUNEE NITISINPRASERT ◽  
...  

A bacteriocin-producing strain, N1-33, isolated from fermented bamboo shoot was identified as Enterococcus faecalis. The pH-adjusted culture supernatant of this strain consisted of several peptides with bacteriocin activity, and the supernatant inhibited the growth of pathogenic bacteria such as Listeria monocytogenes. The major peptide with bacteriocin activity was purified, and the first 39 amino acid residues of the bacteriocin were found to be identical to enterocin MR10A produced by E. faecalis MRR10-3. Addition of the pH-adjusted and concentrated culture supernatant of strain N1-33 caused a marked reduction in the growth of Bacillus cereus in custard cream and L. monocytogenes in pickled cucumber. These results suggest the potential use of the bacteriocin produced by strain N1-33 in food biopreservation.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Emily Moraes Roges ◽  
Verônica Dias Gonçalves ◽  
Maira Duarte Cardoso ◽  
Marcia Lima Festivo ◽  
Salvatore Siciliano ◽  
...  

Aeromonads are natural inhabitants of aquatic environments and may be associated with various human or animal diseases. Its pathogenicity is complex and multifactorial and is associated with many virulence factors. In this study, 110 selected Aeromonas hydrophila isolates isolated from food, animals, and human clinical material from 2010 to 2015 were analyzed. Antimicrobial susceptibility testing was performed by the disk diffusion method, and polymerase chain reaction was conducted to investigate the virulence genes hemolysin (hlyA), cytotoxic enterotoxin (act), heat-labile cytotonic enterotoxin (alt), aerolysin (aerA), and DNase-nuclease (exu). At least 92.7% of the isolates had one of the investigated virulence genes. Twenty different virulence profiles among the isolates were recognized, and the five investigated virulence genes were observed in four isolates. Human source isolates showed greater diversity than food and animal sources. Antimicrobial resistance was observed in 46.4% of the isolates, and multidrug resistance was detected in 3.6% of the isolates. Among the 120 isolates, 45% were resistant to cefoxitin; 23.5% to nalidixic acid; 16.6% to tetracycline; 13.7% to cefotaxime and imipenem; 11.8% to ceftazidime; 5.9% to amikacin, gentamicin, and sulfamethoxazole-trimethoprim; and 3.9% to ciprofloxacin and nitrofurantoin. Overall, the findings of our study indicated the presence of virulence genes and that antimicrobial resistance in A. hydrophila isolates in this study is compatible with potentially pathogenic bacteria. This information will allow us to recognize the potential risk through circulating isolates in animal health and public health and the spread through the food chain offering subsidies for appropriate sanitary actions.



2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Anju Pandey ◽  
Milind Naik ◽  
Santosh Kumar Dubey

A pathogenicAeromonas hydrophilastrain An4 was isolated from marine catfish and characterized with reference to its proteolytic and hemolytic activity along with SDS-PAGE profile (sodium dodecyl sulphate-Polyacrylamide gel electrophoresis) of ECPs (extracellular proteins) showing hemolysin (approximately 50 kDa). Agar well diffusion assay using crude cell extract of the bacterial isolate clearly demonstrated antibacterial activity against indicator pathogenic bacteria,Staphylococcus arlettaestrain An1,Acinetobactersp. strain An2,Vibrio parahaemolyticusstrain An3, andAlteromonas aurentiaSE3 showing inhibitory zone >10 mm well comparable to common antibiotics. Further GC-MS analysis of crude cell extract revealed several metabolites, namely, phenolics, pyrrolo-pyrazines, pyrrolo-pyridine, and butylated hydroxytoluene (well-known antimicrobials). Characterization of EPS using FTIR indicated presence of several protein-related amine and amide groups along with peaks corresponding to carboxylic and phenyl rings which may be attributed to its virulent and antibacterial properties, respectively. Besides hemolysin, EPS, and protease,Aeromonas hydrophilastrain An4 also produced several antibacterial metabolites.



F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1847 ◽  
Author(s):  
Esti Handayani Hardi ◽  
Rudy Agung Nugroho ◽  
Irawan Wijaya Kusuma ◽  
Wiwin Suwinarti ◽  
Agung Sudaryono ◽  
...  

Background: The combination of some plant extracts to prevent and treat bacterial infections is gaining momentum, because of effectiveness against certain bacteria. This study aims to describe the antibacterial and immunostimulant abilities of Boesenbergia pandurata (BP), Solanum ferox (SF) and Zingiber Zerumbet (ZZ) plant extracts to treat and prevent Aeromonas hydrophila and Pseudomonas fluorescens infection on Tilapia (Oreochromis niloticus). Methods: Tilapia (initial weight 15±2 g) were injected intramuscularly (0.1 ml/fish) with a combination of A. hydrophila and P. fluorescens at a density of 1×10 5 CFU ml -1 of each bacteria. Treatment trials were performed at day 7 post-injection with each combined extract, while the prevention trial was performed by including the combined extract into the commercial diet for six and seven days prior to injection. Various extract combinations were 60 mg SF extract/kg feed with 40 mg ZZ/kg feed (SF60/ZZ40), SF50/ZZ50, BP90/SF10, and BP50/SF50. Haemato-immunological parameters were performed for four weeks. Results: In prevention trials, tilapia fed SF50/ZZ50 showed a significant increase of white and red blood cells. Similarly, significantly increased haematocrit was found in tilapia fed SF50/ZZ50 in the treatment trial but not in the prevention trial. In both trials, haemoglobin of tilapia was not affected by any combined extracts but decreased the number of bacteria. Phagocytic index, respiratory burst, lysozyme activity and survival rate of fish fed combined extracts were found significantly higher than controls. The amount of pathogenic bacteria in fish fed combined extracts was lower than the control at week 4 (P<0.05). In both trials The percentage of survival rate and relative percent survival of tilapia fed SF 50/ZZ 50, showed the optimum results compared to the other combinations. Conclusions: The combined extract in feed, especially SF50/ZZ50 has a positive effect on the tilapia's innate immune system of tilapia to treat and prevent bacterial infections.



2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiyuan Lu ◽  
Lin Feng ◽  
Wei-Dan Jiang ◽  
Pei Wu ◽  
Yang Liu ◽  
...  

The objective of this study was to evaluate the efficacy of dietary Mannan oligosaccharides (MOS) supplementation on skin barrier function and the mechanism of on-growing grass carp (Ctenopharyngodon idella). Five hundred forty grass carp were fed for 60 days from the growing stage with six different levels of MOS diets (0, 200, 400, 600, 800, and 1,000 mg kg-1). At the end of the growth trial, the 14-day Aeromonas hydrophila challenge experiment has proceeded. The obtained data indicate that MOS could (1) decline skin lesion morbidity after being challenged by the pathogenic bacteria; (2) maintain physical barrier function via improving antioxidant ability, inhibiting excessive apoptosis, and strengthening the tight junction between the epithelial cell and the related signaling pathway (Nrf2/Keap1, p38MAPK, and MLCK); and (3) regulate immune barrier function by modulating the production of antimicrobial compound and expression of involved cytokines and the related signaling pathway (TOR and NFκB). Finally, we concluded that MOS supplementation reinforced the disease resistance and protected the fish skin barrier function from Aeromonas hydrophila infection.



Sign in / Sign up

Export Citation Format

Share Document