scholarly journals Rare loss-of-function variants in KMT2F are associated with schizophrenia and developmental disorders

2016 ◽  
Author(s):  
Tarjinder Singh ◽  
Mitja I. Kurki ◽  
David Curtis ◽  
Shaun M. Purcell ◽  
Lucy Crooks ◽  
...  

Schizophrenia is a common, debilitating psychiatric disorder with a substantial genetic component. By analysing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls, and 1,077 parent-proband trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in KMT2F and risk for schizophrenia. In this dataset, we observed three de novo LoF mutations, seven LoF variants in cases, and none in controls (P=3.3x10^(-9)). To search for LoF variants in KMT2F in individuals without a known neuropsychiatric diagnosis, we examined the exomes of 45,376 individuals in the ExAC database and found only two heterozygous LoF variants, showing that KMT2F is significantly depleted of LoF variants in the general population. Seven of the ten individuals with schizophrenia carrying KMT2F LoF variants also had varying degrees of learning difficulties. We further identified four KMT2F LoF carriers among 4,281 children with diverse, severe, undiagnosed developmental disorders, and two additional carriers in an independent sample of 5,720 Finnish exomes, both with notable neuropsychiatric phenotypes. Together, our observations show that LoF variants in KMT2F cause a range of neurodevelopmental disorders, including schizophrenia. Combined with previous common variant evidence, we more generally implicate epigenetic dysregulation, specifically in the histone H3K4 methylation pathway, as an important mechanism in the pathogenesis of schizophrenia.

2021 ◽  
Author(s):  
Toshimitsu Suzuki ◽  
Tetsuya Tatsukawa ◽  
Genki Sudo ◽  
Caroline Delandre ◽  
Yun Jin Pai ◽  
...  

CUX2 gene encodes a transcription factor that controls neuronal proliferation, dendrite branching and synapse formation, locating at the epilepsy-associated chromosomal region 12q24 that we previously identified by a genome-wide association study (GWAS) in Japanese population. A CUX2 recurrent de novo variant p.E590K has been described in patients with rare epileptic encephalopathies and the gene is a candidate for the locus, however the mutation may not be enough to generate the genome-wide significance in the GWAS and whether CUX2 variants appear in other types of epilepsies and physiopathological mechanisms are remained to be investigated. Here in this study, we conducted targeted sequencings of CUX2, a paralog CUX1 and its short isoform CASP harboring a unique C-terminus on 271 Japanese patients with a variety of epilepsies, and found that multiple CUX2 missense variants, other than the p.E590K, and some CASP variants including a deletion, predominantly appeared in patients with temporal lobe epilepsy (TLE). Human cell culture and fly dendritic arborization analyses revealed loss-of- function properties for the CUX2 variants. Cux2- and Casp-specific knockout mice both showed high susceptibility to kainate, increased excitatory cell number in the entorhinal cortex, and significant enhancement in glutamatergic synaptic transmission to the hippocampus. CASP and CUX2 proteins physiologically bound to each other and co-expressed in excitatory neurons in brain regions including the entorhinal cortex. These results suggest that CUX2 and CASP variants contribute to the TLE pathology through a facilitation of excitatory synaptic transmission from entorhinal cortex to hippocampus.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
I. M. Krzyzewska ◽  
S. M. Maas ◽  
P. Henneman ◽  
K. v. d. Lip ◽  
A. Venema ◽  
...  

Abstract SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients.


2014 ◽  
Vol 369 (1652) ◽  
pp. 20130514 ◽  
Author(s):  
Erica Shen ◽  
Hennady Shulha ◽  
Zhiping Weng ◽  
Schahram Akbarian

The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes ( ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D ) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 643
Author(s):  
Thibaud Kuca ◽  
Brandy M. Marron ◽  
Joana G. P. Jacinto ◽  
Julia M. Paris ◽  
Christian Gerspach ◽  
...  

Genodermatosis such as hair disorders mostly follow a monogenic mode of inheritance. Congenital hypotrichosis (HY) belong to this group of disorders and is characterized by abnormally reduced hair since birth. The purpose of this study was to characterize the clinical phenotype of a breed-specific non-syndromic form of HY in Belted Galloway cattle and to identify the causative genetic variant for this recessive disorder. An affected calf born in Switzerland presented with multiple small to large areas of alopecia on the limbs and on the dorsal part of the head, neck, and back. A genome-wide association study using Swiss and US Belted Galloway cattle encompassing 12 cases and 61 controls revealed an association signal on chromosome 29. Homozygosity mapping in a subset of cases refined the HY locus to a 1.5 Mb critical interval and subsequent Sanger sequencing of protein-coding exons of positional candidate genes revealed a stop gain variant in the HEPHL1 gene that encodes a multi-copper ferroxidase protein so-called hephaestin like 1 (c.1684A>T; p.Lys562*). A perfect concordance between the homozygous presence of this most likely pathogenic loss-of-function variant and the HY phenotype was found. Genotyping of more than 700 purebred Swiss and US Belted Galloway cattle showed the global spread of the mutation. This study provides a molecular test that will permit the avoidance of risk matings by systematic genotyping of relevant breeding animals. This rare recessive HEPHL1-related form of hypotrichosis provides a novel large animal model for similar human conditions. The results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002230-9913).


BMC Genetics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 24 ◽  
Author(s):  
Samuel G Younkin ◽  
Robert B Scharpf ◽  
Holger Schwender ◽  
Margaret M Parker ◽  
Alan F Scott ◽  
...  

2017 ◽  
Vol 3 (5) ◽  
pp. e177 ◽  
Author(s):  
Javier Ruiz-Martínez ◽  
Luis J. Azcona ◽  
Alberto Bergareche ◽  
Jose F. Martí-Massó ◽  
Coro Paisán-Ruiz

Objective:Despite the enormous advancements made in deciphering the genetic architecture of Parkinson disease (PD), the majority of PD is idiopathic, with single gene mutations explaining only a small proportion of the cases.Methods:In this study, we clinically evaluated 2 unrelated Spanish families diagnosed with PD, in which known PD genes were previously excluded, and performed whole-exome sequencing analyses in affected individuals for disease gene identification.Results:Patients were diagnosed with typical PD without relevant distinctive symptoms. Two different novel mutations were identified in the CSMD1 gene. The CSMD1 gene, which encodes a complement control protein that is known to participate in the complement activation and inflammation in the developing CNS, was previously shown to be associated with the risk of PD in a genome-wide association study.Conclusions:We conclude that the CSMD1 mutations identified in this study might be responsible for the PD phenotype observed in our examined patients. This, along with previous reported studies, may suggest the complement pathway as an important therapeutic target for PD and other neurodegenerative diseases.


2021 ◽  
Author(s):  
Ying Zhang ◽  
Yanyan Nie ◽  
Yu Mu ◽  
Jie Zheng ◽  
Xiaowei Xu ◽  
...  

Abstract Background:The pathogenic variation of CASK gene can cause CASK related mental disorders. The main clinical manifestations are microcephaly with pontine and cerebellar hypoplasia, X-linked mental disorders with or without nystagmus and FG syndrome. The main pathogenic mechanism is the loss of function of related protein caused by mutation. We reported a Chinese male newborn with a de novo variant in CASK gene. Case presentation:We present an 18-day-old baby with intellectual disability and brain hypoplasia. Whole-exome sequencing was performed, which detected a hemizygous missense mutation c.764G>A of CASK gene. The mutation changed the 255th amino acid from Arg to His. Software based bioinformatics analyses were conducted to infer its functional effect.Conclusions:In this paper, a de novo mutation of CASK gene was reported. Moreover, a detailed description of all the cases described in the literature is reported.CASK mutations cause a variety of clinical phenotypes. Its diagnosis is difficult due to the lack of typical clinical symptoms. Genetic testing should be performed as early as possible if this disease is suspected. This case provides an important reference for the diagnosis and treatment of future cases.


2021 ◽  
Author(s):  
Xinxin Yi ◽  
Jing Liu ◽  
Shengcai Chen ◽  
Hao Wu ◽  
Min Liu ◽  
...  

Cultivated soybean (Glycine max) is an important source for protein and oil. Many elite cultivars with different traits have been developed for different conditions. Each soybean strain has its own genetic diversity, and the availability of more high-quality soybean genomes can enhance comparative genomic analysis for identifying genetic underpinnings for its unique traits. In this study, we constructed a high-quality de novo assembly of an elite soybean cultivar Jidou 17 (JD17) with chromsome contiguity and high accuracy. We annotated 52,840 gene models and reconstructed 74,054 high-quality full-length transcripts. We performed a genome-wide comparative analysis based on the reference genome of JD17 with three published soybeans (WM82, ZH13 and W05) , which identified five large inversions and two large translocations specific to JD17, 20,984 - 46,912 PAVs spanning 13.1 - 46.9 Mb in size, and 5 - 53 large PAV clusters larger than 500kb. 1,695,741 - 3,664,629 SNPs and 446,689 - 800,489 Indels were identified and annotated between JD17 and them. Symbiotic nitrogen fixation (SNF) genes were identified and the effects from these variants were further evaluated. It was found that the coding sequences of 9 nitrogen fixation-related genes were greatly affected. The high-quality genome assembly of JD17 can serve as a valuable reference for soybean functional genomics research.


2020 ◽  
Author(s):  
Lei Li ◽  
Yanjie Chao

ABSTRACTSmall proteins shorter than 50 amino acids have been long overlooked. A number of small proteins have been identified in several model bacteria using experimental approaches and assigned important functions in diverse cellular processes. The recent development of ribosome profiling technologies has allowed a genome-wide identification of small proteins and small ORFs (smORFs), but our incomplete understanding of small proteins hinders de novo computational prediction of smORFs in non-model bacterial species. Here, we have identified several sequence features for smORFs by a systematic analysis of all the known small proteins in E. coli, among which the translation initiation rate is the strongest determinant. By integrating these features into a support vector machine learning model, we have developed a novel sPepFinder algorithm that can predict conserved smORFs in bacterial genomes with a high accuracy of 92.8%. De novo prediction in E. coli has revealed several novel smORFs with evidence of translation supported by ribosome profiling. Further application of sPepFinder in 549 bacterial species has led to the identification of > 100,000 novel smORFs, many of which are conserved at the amino acid and nucleotide levels under purifying selection. Overall, we have established sPepFinder as a valuable tool to identify novel smORFs in both model and non-model bacterial organisms, and provided a large resource of small proteins for functional characterizations.


2020 ◽  
Vol 105 (12) ◽  
pp. 3854-3864
Author(s):  
Jin-Fang Chai ◽  
Shih-Ling Kao ◽  
Chaolong Wang ◽  
Victor Jun-Yu Lim ◽  
Ing Wei Khor ◽  
...  

Abstract Context Glycated hemoglobin A1c (HbA1c) level is used to screen and diagnose diabetes. Genetic determinants of HbA1c can vary across populations and many of the genetic variants influencing HbA1c level were specific to populations. Objective To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals. Design and Participants We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants. Results Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P < 5 × 10-8). Of the 4 loci, 3 (ADAM15, LINC02226, JUP) were novel for HbA1c associations. At the previously reported HbA1c locus ATXN7L3-G6PC3, association analysis using the exome data fine-mapped the HbA1c associations to a 27-bp deletion (rs769664228) at SLC4A1 that reduced HbA1c by 0.38 ± 0.06% (P = 3.5 × 10-10). Further imputation of this variant in SiMES confirmed the association with HbA1c at SLC4A1. We also showed that these genetic variants influence HbA1c level independent of glucose level. Conclusion We identified a deletion at SLC4A1 associated with HbA1c in Malay. The nonglycemic lowering of HbA1c at rs769664228 might cause individuals carrying this variant to be underdiagnosed for diabetes or prediabetes when HbA1c is used as the only diagnostic test for diabetes.


Sign in / Sign up

Export Citation Format

Share Document