scholarly journals How life history can sway the fixation probability of mutants

2016 ◽  
Author(s):  
Xiang-Yi Li ◽  
Shun Kurokawa ◽  
Stefano Giaimo ◽  
Arne Traulsen

AbstractIn this work, we study the effects of demographic structure on evolutionary dynamics, when selection acts on reproduction, survival, or both. In contrast with the previously discovered pattern that the fixation probability of a neutral mutant decreases while population becomes younger, we show that a mutant with constant selective advantage may have a maximum or a minimum of the fixation probability in populations with an intermediate fraction of young individuals. This highlights the importance of life history and demographic structure in studying evolutionary dynamics. We also illustrate the fundamental differences between selection on reproduction and on survival when age structure is present. In addition, we evaluate the relative importance of size and structure of the population in determining the fixation probability of the mutant. Our work lays the foundation for studying also density and frequency dependent effects in populations when demographic structures cannot be neglected.

2018 ◽  
Author(s):  
Peter Czuppon ◽  
Chaitanya S. Gokhale

AbstractIn population genetics, fixation of traits in a demographically changing population under frequency-independent selection has been extensively analysed. In evolutionary game theory, models of fixation have typically focused on fixed population sizes and frequency-dependent selection. A combination of demographic fluctuations with frequency-dependent interactions such as Lotka-Volterra dynamics has received comparatively little attention. We consider a stochastic, competitive Lotka-Volterra model with higher order interactions between two traits. The emerging individual based model allows for stochastic fluctuations in the frequencies of the two traits and the total population size. We calculate the fixation probability of a trait under differing competition coefficients. This fixation probability resembles qualitatively the deterministic evolutionary dynamics. Furthermore, we partially disentangle the selection effects into their ecological and evolutionary components. We find that changing the evolutionary selection strength also changes the population dynamics and vice versa. Thus, a clean separation of the ecological and evolutionary effects is not possible. The entangled eco-evolutionary processes thus cannot be ignored when determining fixation properties in a co-evolutionary system.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
H. De Kort ◽  
J. G. Prunier ◽  
S. Ducatez ◽  
O. Honnay ◽  
M. Baguette ◽  
...  

AbstractUnderstanding how biological and environmental factors interactively shape the global distribution of plant and animal genetic diversity is fundamental to biodiversity conservation. Genetic diversity measured in local populations (GDP) is correspondingly assumed representative for population fitness and eco-evolutionary dynamics. For 8356 populations across the globe, we report that plants systematically display much lower GDP than animals, and that life history traits shape GDP patterns both directly (animal longevity and size), and indirectly by mediating core-periphery patterns (animal fecundity and plant dispersal). Particularly in some plant groups, peripheral populations can sustain similar GDP as core populations, emphasizing their potential conservation value. We further find surprisingly weak support for general latitudinal GDP trends. Finally, contemporary rather than past climate contributes to the spatial distribution of GDP, suggesting that contemporary environmental changes affect global patterns of GDP. Our findings generate new perspectives for the conservation of genetic resources at worldwide and taxonomic-wide scales.


2011 ◽  
Vol 222 (3) ◽  
pp. 485-492 ◽  
Author(s):  
Johannes Järemo ◽  
Göran Bengtsson

2008 ◽  
Vol 29 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Carissa Jones ◽  
Isaac Rojas-González ◽  
Julio Lemos-Espinal ◽  
Jaime Zúñiga-Vega

Abstract There appears to be variation in life-history strategies even between populations of the same species. For ectothermic organisms such as lizards, it has been predicted that demographic and life-history traits should differ consistently between temperate and tropical populations. This study compares the demographic strategies of a temperate and a tropical population of the lizard Xenosaurus platyceps. Population growth rates in both types of environments indicated populations in numerical equilibrium. Of the two populations, we found that the temperate population experiences lower adult mortality. The relative importance (estimated as the relative contribution to population growth rate) of permanence and of the adult/reproductive size classes is higher in the temperate population. In contrast, the relative importance for average fitness of fecundity and growth is higher in the tropical population. These results are consistent with the theoretical frameworks about life-historical differences among tropical and temperate lizard populations.


Botany ◽  
2014 ◽  
Vol 92 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Christopher R. Webster ◽  
Michael A. Jenkins

We investigated the influence of chronic herbivory by white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) on the age structure and morphology of Trillium catesbaei Elliott. At sites with contrasting histories of deer abundance (Cades Cove, high; Whiteoak Sink, low), we measured morphological characteristics and determined minimum plant age for 60 plants (30 per site) in the single-leaf life-history stage. We chose this stage because its presence is considered an indication of successful reproduction by the previous generation, but its value could be inflated if plants regress or remain in this stage for extended periods. Our results suggest that T. catesbaei may spend upwards of a decade in this stage. Cades Cove single leaves were significantly older (p = 0.011) than those at Whiteoak Sink. Rhizome recession (decay of the oldest portion) was more common at Cades Cove, suggesting greater regression to this stage from three-leaf stages. Although minimum plant age was significantly associated with vegetative attributes (p < 0.002) at Whiteoak Sink, these attributes were decoupled at Cades Cove (p ≥ 0.642). Collectively, our results suggest that chronic herbivory may lead to a long and regressive residency period in the single-leaf stage. Consequently, in Trillium populations heavily impacted by deer, the number of single-leaf plants may be a poor indicator of reproductive success and population viability.


2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.


2017 ◽  
pp. 65-72
Author(s):  
Z. О. Palian ◽  
I. H. Bondarenko

A balanced change in demographic processes should be considered as a prerequisite and, at the same time, as a result of the stable development of the state. Reproduction intensity depends not only on the character of demographic behavior, but also on the presence of contingents of the population, providing or potentially able to provide for its replacement. The dynamics of Ukrainian population, the transformation of its gender-age structure during the period of independence, taking into account the intensive and structural factors of natural increase and migration, is considered. During 2002-2015, the regime of survival and fertility improved in Ukraine, due to which the depopulation slowed down somewhat. But even these positive changes do not compensate for the loss of population size as a result of systematic aging, reducing the proportion of reproductive contingent and its aging. Significant demographic losses, direct and indirect, were caused by a hybrid war from Russia. Alienation of the territory of the Crimea and parts of Donbas is not only a minus 2.5 million citizens of Ukraine. This is a change in the structure of the population - a decrease in the proportion of older age groups that increase the demographic load and worsen the characteristics of survival and fertility of the maternal generation. In this work are presented the results of the short-term simulation of population size and structure taking into account modern trends of replacements components and existing administrative-territorial changes. Two scenarios of the forecast for 2018 have been developed, and the base year it was taken in 2013, when the Crimea was part of Ukraine. The first, realistic scenario was based on the preservation of the current situation - Ukraine without the annexed Crimea and the occupied part of the Donbas. The second scenario imitates the return to Ukraine of all the lost territories. Simulation showed that the population of Ukraine will be reduced by both scenarios, but to 41.9 million people under the scenario without the occupied and annexed territories and to 44.7 million people in the second scenario. The finish of war will due to slow down the death rate to 14.9%0. The age structure of the population does not differ significantly in two scenarios, because the forecast horizon is very short (4 years). The share of generation of parents and women of reproductive age in both variants of the forecast decreases. However, in the case of returning Crimea, it will be even lower (47.4% vs. 47.5% in the first scenario). The reason for this is the emigration of young and middle-aged people to the mainland of Ukraine and to the Russian Federation, which provided some preferences to the settlers from Ukraine. Expected structural changes combined with the modern life and fertility regime will worsen natural population growth rates in both scenarios. In further research is planned to build trend models of births and deaths that will allow the artificially restore the interrupted time series due to administrative-territorial incomparability of data on demographic events


2019 ◽  
Author(s):  
Caroline B. Turner ◽  
Sean W. Buskirk ◽  
Katrina B. Harris ◽  
Vaughn S. Cooper

AbstractNatural environments are rarely static; rather selection can fluctuate on time scales ranging from hours to centuries. However, it is unclear how adaptation to fluctuating environments differs from adaptation to constant environments at the genetic level. For bacteria, one key axis of environmental variation is selection for planktonic or biofilm modes of growth. We conducted an evolution experiment with Burkholderia cenocepacia, comparing the evolutionary dynamics of populations evolving under constant selection for either biofilm formation or planktonic growth with populations in which selection fluctuated between the two environments on a weekly basis. Populations evolved in the fluctuating environment shared many of the same genetic targets of selection as those evolved in constant biofilm selection, but were genetically distinct from the constant planktonic populations. In the fluctuating environment, mutations in the biofilm-regulating genes wspA and rpfR rose to high frequency in all replicate populations. A mutation in wspA first rose rapidly and nearly fixed during the initial biofilm phase but was subsequently displaced by a collection of rpfR mutants upon the shift to the planktonic phase. The wspA and rpfR genotypes coexisted via negative frequency-dependent selection around an equilibrium frequency that shifted between the environments. The maintenance of coexisting genotypes in the fluctuating environment was unexpected. Under temporally fluctuating environments coexistence of two genotypes is only predicted under a narrow range of conditions, but the frequency-dependent interactions we observed provide a mechanism that can increase the likelihood of coexistence in fluctuating environments.


2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


Sign in / Sign up

Export Citation Format

Share Document