scholarly journals LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis

2016 ◽  
Author(s):  
Jie Zheng ◽  
A. Mesut Erzurumluoglu ◽  
Benjamin L. Elsworth ◽  
Laurence Howe ◽  
Philip C. Haycock ◽  
...  

AbstractMotivationLD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously.ResultsIn this manuscript, we describe LD Hub – a centralized database of summary-level GWAS results for 177 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies.Availability and implementationThe web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/

2015 ◽  
Author(s):  
Brendan Bulik-Sullivan ◽  
Hilary K Finucane ◽  
Verneri Anttila ◽  
Alexander Gusev ◽  
Felix R Day ◽  
...  

Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use our method to estimate 300 genetic correlations among 25 traits, totaling more than 1.5 million unique phenotype measurements. Our results include genetic correlations between anorexia nervosa and schizophrenia/ body mass index and associations between educational attainment and several diseases. These results highlight the power of a polygenic modeling framework, since there currently are no genome-wide significant SNPs for anorexia nervosa and only three for educational attainment.


2020 ◽  
Author(s):  
Adrian I Campos ◽  
Nathan Ingold ◽  
Yunru Huang ◽  
Pik Fang Kho ◽  
Xikun Han ◽  
...  

Rationale: Sleep apnoea is a complex disorder characterised by periods of halted breathing during sleep. Despite its association with serious health conditions such as cardiovascular disease, the aetiology of sleep apnoea remains understudied, and previous genetic studies have failed to identify replicable genetic risk factors. Objective: To advance our understanding of factors that increase susceptibility to sleep apnoea by identifying novel genetic associations. Methods: We conducted a genome-wide association study (GWAS) meta-analysis of sleep apnoea across five cohorts, and a previously published GWAS of apnoea-hypopnea index (N Total =510,484). Further, we used multi-trait analysis of GWAS (MTAG) to boost statistical power, leveraging the high genetic correlations between apnoea, snoring and body mass index. Replication was performed in an independent sample from 23andMe, Inc (N Total =1,477,352; N cases =175,522). Results: Our results revealed 39 independent genomic loci robustly associated with sleep apnoea risk, and significant genetic correlations with multisite chronic pain, sleep disorders, diabetes, high blood pressure, osteoarthritis, asthma and BMI-related traits. We also derived polygenic risk scores for sleep apnoea in a leave-one-out independent cohort and predicted probable sleep apnoea in participants (OR=1.15 to 1.22; variance explained = 0.4 to 0.9%). Conclusions: We report novel genetic markers robustly associated with sleep apnoea risk and substantial molecular overlap with other complex traits, thus advancing our understanding of the underlying biological mechanisms of susceptibility to sleep apnoea.


2019 ◽  
Author(s):  
Gabriel Cuellar Partida ◽  
Joyce Y Tung ◽  
Nicholas Eriksson ◽  
Eva Albrecht ◽  
Fazil Aliev ◽  
...  

AbstractHandedness, a consistent asymmetry in skill or use of the hands, has been studied extensively because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and 32 studies from the International Handedness Consortium, we conducted the world’s largest genome-wide association study of handedness (1,534,836 right-handed, 194,198 (11.0%) left-handed and 37,637 (2.1%) ambidextrous individuals). We found 41 genetic loci associated with left-handedness and seven associated with ambidexterity at genome-wide levels of significance (P < 5×10−8). Tissue enrichment analysis implicated the central nervous system and brain tissues including the hippocampus and cerebrum in the etiology of left-handedness. Pathways including regulation of microtubules, neurogenesis, axonogenesis and hippocampus morphology were also highlighted. We found suggestive positive genetic correlations between being left-handed and some neuropsychiatric traits including schizophrenia and bipolar disorder. SNP heritability analyses indicated that additive genetic effects of genotyped variants explained 5.9% (95% CI = 5.8% – 6.0%) of the underlying liability of being left-handed, while the narrow sense heritability was estimated at 12% (95% CI = 7.2% – 17.7%). Further, we show that genetic correlation between left-handedness and ambidexterity is low (rg = 0.26; 95% CI = 0.08 – 0.43) implying that these traits are largely influenced by different genetic mechanisms. In conclusion, our findings suggest that handedness, like many other complex traits is highly polygenic, and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders that has been observed in multiple observational studies.


2018 ◽  
Author(s):  
Sandra Sanchez-Roige ◽  
Abraham A. Palmer ◽  
Pierre Fontanillas ◽  
Sarah L. Elson ◽  
Mark J. Adams ◽  
...  

AbstractAlcohol use disorders (AUD) are common conditions that have enormous social and economic consequences. We obtained quantitative measures using the Alcohol Use Disorder Identification Test (AUDIT) from two population-based cohorts of European ancestry: UK Biobank (UKB; N=121,604) and 23andMe (N=20,328) and performed a genome-wide association study (GWAS) meta-analysis. We also performed GWAS for AUDIT items 1-3, which focus on consumption (AUDIT-C), and for items 4-10, which focus on the problematic consequences of drinking (AUDIT-P). The GWAS meta-analysis of AUDIT total score identified 10 associated risk loci. Novel associations localized to genes including JCAD and SLC39A13; we also replicated previously identified signals in the genes ADH1B, ADH1C, KLB, and GCKR. The dimensions of AUDIT showed positive genetic correlations with alcohol consumption (rg=0.76-0.92) and Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) alcohol dependence (rg=0.33-0.63). AUDIT-P and AUDIT-C showed significantly different patterns of association across a number of traits, including psychiatric disorders. AUDIT-P was positively genetically correlated with schizophrenia (rg=0.22, p=3.0×10−10), major depressive disorder (rg=0.26, p=5.6×10−3), and attention-deficit/hyperactivity disorder (ADHD; rg=0.23, p=1.1×10−5), whereas AUDIT-C was negatively genetically correlated with major depressive disorder (rg=−0.24, p=3.7×10−3) and ADHD (rg=−0.10, p=1.8×10−2). We also used the AUDIT data in the UKB to identify thresholds for dichotomizing AUDIT total score that optimize genetic correlations with DSM-IV alcohol dependence. Coding individuals with AUDIT total score of ≤4 as controls and ≥12 as cases produced a high genetic correlation with DSM-IV alcohol dependence (rg=0.82, p=3.2×10−6) while retaining most subjects. We conclude that AUDIT scores ascertained in population-based cohorts can be used to explore the genetic basis of both alcohol consumption and AUD.


2021 ◽  
Author(s):  
Sebastian May-Wilson ◽  
Nana Matoba ◽  
Kaitlin H Wade ◽  
Jouke-Jan Hottenga ◽  
Maria Pina Concas ◽  
...  

Variable preferences for different foods are among the main determinants of their intake and are influenced by many factors, including genetics. Despite considerable twins' heritability, studies aimed at uncovering food-liking genetics have focused mostly on taste receptors. Here, we present the first results of a large-scale genome-wide association study of food liking conducted on 161,625 participants from UK Biobank. Liking was assessed over 139 specific foods using a 9-point hedonic scale. After performing GWAS, we used genetic correlations coupled with structural equation modelling to create a multi-level hierarchical map of food liking. We identified three main dimensions: high caloric foods defined as "Highly palatable", strong-tasting foods ranging from alcohol to pungent vegetables, defined as "Learned" and finally "Low caloric" foods such as fruit and vegetables. The "Highly palatable" dimension was genetically uncorrelated from the other two, suggesting that two independent processes underlie liking high reward foods and the Learned/Low caloric ones. Genetic correlation analysis with the corresponding food consumption traits revealed a high correlation, while liking showed twice the heritability compared to consumption. For example, fresh fruit liking and consumption showed a genetic correlation of 0.7 with heritabilities of 0.1 and 0.05, respectively. GWAS analysis identified 1401 significant food-liking associations located in 173 genomic loci, with only 11 near taste or olfactory receptors. Genetic correlation with morphological and functional brain data (33,224 UKB participants) uncovers associations of the three food-liking dimensions with non-overlapping, distinct brain areas and networks, suggestive of separate neural mechanisms underlying the liking dimensions. In conclusion, we created a comprehensive and data-driven map of the genetic determinants and associated neurophysiological factors of food liking beyond taste receptor genes.


2020 ◽  
Vol 8 (1) ◽  
pp. e001140
Author(s):  
Xinpei Wang ◽  
Jinzhu Jia ◽  
Tao Huang

ObjectiveWe aimed to estimate genetic correlation, identify shared loci and test causality between leptin levels and type 2 diabetes (T2D).Research design and methodsOur study consists of three parts. First, we calculated the genetic correlation of leptin levels and T2D or glycemic traits by using linkage disequilibrium score regression analysis. Second, we conducted a large-scale genome-wide cross-trait meta-analysis using cross-phenotype association to identify shared loci between trait pairs that showed significant genetic correlations in the first part. In the end, we carried out a bidirectional MR analysis to find out whether there is a causal relationship between leptin levels and T2D or glycemic traits.ResultsWe found positive genetic correlations between leptin levels and T2D (Rg=0.3165, p=0.0227), fasting insulin (FI) (Rg=0.517, p=0.0076), homeostasis model assessment-insulin resistance (HOMA-IR) (Rg=0.4785, p=0.0196), as well as surrogate estimates of β-cell function (HOMA-β) (Rg=0.4456, p=0.0214). We identified 12 shared loci between leptin levels and T2D, 1 locus between leptin levels and FI, 1 locus between leptin levels and HOMA-IR, and 1 locus between leptin levels and HOMA-β. We newly identified eight loci that did not achieve genome-wide significance in trait-specific genome-wide association studies. These shared genes were enriched in pancreas, thyroid gland, skeletal muscle, placenta, liver and cerebral cortex. In addition, we found that 1-SD increase in HOMA-IR was causally associated with a 0.329 ng/mL increase in leptin levels (β=0.329, p=0.001).ConclusionsOur results have shown the shared genetic architecture between leptin levels and T2D and found causality of HOMA-IR on leptin levels, shedding light on the molecular mechanisms underlying the association between leptin levels and T2D.


2018 ◽  
Author(s):  
Iris E Jansen ◽  
Jeanne E Savage ◽  
Kyoko Watanabe ◽  
Julien Bryois ◽  
Dylan M Williams ◽  
...  

AbstractLate onset Alzheimer’s disease (AD) is the most common form of dementia with more than 35 million people affected worldwide, and no curative treatment available. AD is highly heritable and recent genome-wide meta-analyses have identified over 20 genomic loci associated with AD, yet only explaining a small proportion of the genetic variance indicating that undiscovered loci exist. Here, we performed the largest genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 AD cases, 383,378 controls). AD-by-proxy status is based on parental AD diagnosis, and showed strong genetic correlation with AD (rg=0.81). Genetic meta analysis identified 29 risk loci, of which 9 are novel, and implicating 215 potential causative genes. Independent replication further supports these novel loci in AD. Associated genes are strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). Furthermore, gene-set analyses indicate the genetic contribution of biological mechanisms involved in lipid-related processes and degradation of amyloid precursor proteins. We show strong genetic correlations with multiple health-related outcomes, and Mendelian randomisation results suggest a protective effect of cognitive ability on AD risk. These results are a step forward in identifying more of the genetic factors that contribute to AD risk and add novel insights into the neurobiology of AD to guide new drug development.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323868
Author(s):  
Tenghao Zheng ◽  
David Ellinghaus ◽  
Simonas Juzenas ◽  
François Cossais ◽  
Greta Burmeister ◽  
...  

ObjectiveHaemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date.DesignWe conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry. Using GWAS summary statistics, we performed multiple genetic correlation analyses between HEM and other traits as well as calculated HEM polygenic risk scores (PRS) and evaluated their translational potential in independent datasets. Using functional annotation of GWAS results, we identified HEM candidate genes, which differential expression and coexpression in HEM tissues were evaluated employing RNA-seq analyses. The localisation of expressed proteins at selected loci was investigated by immunohistochemistry.ResultsWe demonstrate modest heritability and genetic correlation of HEM with several other diseases from the GI, neuroaffective and cardiovascular domains. HEM PRS validated in 180 435 individuals from independent datasets allowed the identification of those at risk and correlated with younger age of onset and recurrent surgery. We identified 102 independent HEM risk loci harbouring genes whose expression is enriched in blood vessels and GI tissues, and in pathways associated with smooth muscles, epithelial and endothelial development and morphogenesis. Network transcriptomic analyses highlighted HEM gene coexpression modules that are relevant to the development and integrity of the musculoskeletal and epidermal systems, and the organisation of the extracellular matrix.ConclusionHEM has a genetic component that predisposes to smooth muscle, epithelial and connective tissue dysfunction.


2016 ◽  
Author(s):  
Huwenbo Shi ◽  
Nicholas Mancuso ◽  
Sarah Spendlove ◽  
Bogdan Pasaniuc

AbstractAlthough genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise quantification of which genomic regions contribute to the genome-wide genetic correlation is currently lacking. Here, we introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome. Our approach only requires GWAS summary data and makes no distributional assumption on the causal variant effects sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 35 complex traits, and identified 27 genomic regions that contribute significantly to the genetic correlation among these traits. Notably, we find 7 genomic regions that contribute to the genetic correlation of 12 pairs of traits that show negligible genome-wide correlation, further showcasing the power of local genetic correlation analyses. Finally, we leverage the distribution of local genetic correlations across the genome to assign putative direction of causality for 15 pairs of traits.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ke Xu ◽  
◽  
Boyang Li ◽  
Kathleen A. McGinnis ◽  
Rachel Vickers-Smith ◽  
...  

Abstract Here we report a large genome-wide association study (GWAS) for longitudinal smoking phenotypes in 286,118 individuals from the Million Veteran Program (MVP) where we identified 18 loci for smoking trajectory of current versus never in European Americans, one locus in African Americans, and one in Hispanic Americans. Functional annotations prioritized several dozen genes where significant loci co-localized with either expression quantitative trait loci or chromatin interactions. The smoking trajectories were genetically correlated with 209 complex traits, for 33 of which smoking was either a causal or a consequential factor. We also performed European-ancestry meta-analyses for smoking status in the MVP and GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) (Ntotal = 842,717) and identified 99 loci for smoking initiation and 13 loci for smoking cessation. Overall, this large GWAS of longitudinal smoking phenotype in multiple populations, combined with a meta-GWAS for smoking status, adds new insights into the genetic vulnerability for smoking behavior.


Sign in / Sign up

Export Citation Format

Share Document