scholarly journals “In-silico studies of facilitated VEGF(s) – VEGFR(s) bindings for assessment of Lysine as an indirect Low-Mol-Wt angiogen: Experimental validation of a potential synthetic Low-Mol-Wt angiogen”

2016 ◽  
Author(s):  
Priyanshu Verma ◽  
Aritri Bir ◽  
Anindita Banerjee ◽  
Joy Basu ◽  
Sujoy Kar ◽  
...  

AbstractIn-vivo angiogenesis process is highly conserved and is mediated through a family of peptides having VEGF-A as the lead member. A respective receptor family comprising of members VEGFR-1, 2, 3 gets expressed on the endothelial cell membrane of the vascular bed in ischemic zone along with parallel expressions of VEGF-A, B, C, D and PlGF. Degree of ischaemia is the main regulator of these coupled expressions of angiogenic peptides/factors (AFs) and respective receptor(s) for a paracrine angiogenic process to take place. Physiological angiogenesis in intrauterine growth phase is the lead process in foetal growth, organogenesis and cellular specialization. Post birth and with aging, this process gets gradually inefficient and slow. In the present in-silico study, all angiogenic factors and receptor species are examined as for their binding stability in basal unaided condition and in presence of a possible Low-Mol-Wt linkage molecule–Lysine. Also a Lysine analogue 1,6-diaminohexanoic acid has been examined for its angiogenic potential both in dry docking experiment and in cell culture assay.

2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095395
Author(s):  
Ateeq Ahmed Al-Zahrani

The process of investigating a possible cure for coronavirus disease 2019 (COVID-19) in vitro and in vivo may take a long time. For this reason, several in silico studies were performed in order to produce preliminary results that could lead to treatment. Extract of Juniperus procera Hochst is used as a traditional medicine for recovery from flu in Saudi Arabia. In the present study, more than 51 phytochemicals of J. procera were docked against the main protease of COVID-19. Rutin gave the highest interaction score among all the phytochemicals and the commercially available antiviral drugs. Lopinavir showed the second highest binding score. Rutin and lopinavir were further investigated using homology models of COVID-19. Rutin showed a better inhibition score in 9 of the 11 of homology models compared with lopinavir. Analysis of ligand-protein interaction contacts revealed that 3 residues (Glu166, Gly143, and Thr45) of the main protease formed hydrogen bonds with rutin. This simulation study suggests that rutin could be a possible effective inhibitor of several COVID-19 protein targets, including the main protease. Rutin, already available for commercial use, was evaluated for its ability as a possible drug. To our knowledge, this is the first study that suggests rutin having a possible strong inhibitory role against several protein targets of COVID-19.


2020 ◽  
Vol 13 (2) ◽  
pp. 256-260
Author(s):  
Sianiwati Goenharto ◽  
I Ketut Sudiana ◽  
Sherman Salim ◽  
Elly Rusdiana ◽  
Sri Wahjuni

Aim: This study aimed to predict the potential inflammation in lungs caused by exposure to methyl methacrylate (MMA; in silico study) and assess inflammation in lungs in response to MMA inhalation in mice (in vivo study). Materials and Methods: In silico and in vivo studies were performed using 24 mice divided into a control group (0 ppm MMA) and five treatment groups, which were exposed to 150 ppm MMA for 40, 80, 120, 160, and 200 min, respectively. Lung tissues were harvested and examined with a light microscope at 400×. Results: In silico studies confirmed the existence of one activation bond between MMA and the toll-like receptor 4 (TLR- 4), namely, His 228, with a MolDock score of –43.677 kcal/mol. Microscopic examination of lungs confirmed that a greater number of inflammatory cells were found in the treatment group than in the control group and symptoms of inflammation were clearly observable after 120 min of exposure. Conclusion: Thus, inflammation occurring due to MMA interaction with TLR-4 receptors can be predicted in silico and exposure to 150 ppm MMA for more than 120 min can cause lung inflammation in mice.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 15 (1) ◽  
pp. 102-118 ◽  
Author(s):  
Carolina Campos-Rodríguez ◽  
José G. Trujillo-Ferrara ◽  
Ameyali Alvarez-Guerra ◽  
Irán M. Cumbres Vargas ◽  
Roberto I. Cuevas-Hernández ◽  
...  

Background: Thalidomide, the first synthesized phthalimide, has demonstrated sedative- hypnotic and antiepileptic effects on the central nervous system. N-substituted phthalimides have an interesting chemical structure that confers important biological properties. Objective: Non-chiral (ortho and para bis-isoindoline-1,3-dione, phthaloylglycine) and chiral phthalimides (N-substituted with aspartate or glutamate) were synthesized and the sedative, anxiolytic and anticonvulsant effects were tested. Method: Homology modeling and molecular docking were employed to predict recognition of the analogues by hNMDA and mGlu receptors. The neuropharmacological activity was tested with the open field test and elevated plus maze (EPM). The compounds were tested in mouse models of acute convulsions induced either by pentylenetetrazol (PTZ; 90 mg/kg) or 4-aminopyridine (4-AP; 10 mg/kg). Results: The ortho and para non-chiral compounds at 562.3 and 316 mg/kg, respectively, decreased locomotor activity. Contrarily, the chiral compounds produced excitatory effects. Increased locomotor activity was found with S-TGLU and R-TGLU at 100, 316 and 562.3 mg/kg, and S-TASP at 316 and 562.3 mg/kg. These molecules showed no activity in the EPM test or PTZ model. In the 4-AP model, however, S-TGLU (237.1, 316 and 421.7 mg/kg) as well as S-TASP and R-TASP (316 mg/kg) lowered the convulsive and death rate. Conclusion: The chiral compounds exhibited a non-competitive NMDAR antagonist profile and the non-chiral molecules possessed selective sedative properties. The NMDAR exhibited stereoselectivity for S-TGLU while it is not a preference for the aspartic derivatives. The results appear to be supported by the in silico studies, which evidenced a high affinity of phthalimides for the hNMDAR and mGluR type 1.


Author(s):  
Trinath Chowdhury ◽  
Gourisankar Roymahapatra ◽  
Santi M. Mandal

Background: COVID-19 is a life threatening novel corona viral infection to our civilization and spreading rapidly. Terrific efforts are generous by the researchers to search for a drug to control SARS-CoV-2. Methods: Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. Results: Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/mol) revealed most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also perform the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). Conclusion: In host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast invitro to in-vivo analysis towards development of therapeutics against SARS-CoV-2.


Author(s):  
Daiahun Thabah ◽  
Donkupar Syiem ◽  
Careen Liza Pakyntein ◽  
Sagnik Banerjee ◽  
Cynthia Erica Kharshiing ◽  
...  

Author(s):  
Antonio Wlisses da Silva ◽  
Maria Kueirislene A. Ferreira ◽  
Lucas Ramos Pereira ◽  
Emanuela L. Rebouças ◽  
Marnielle Rodrigues Coutinho ◽  
...  

2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110166
Author(s):  
Xin Yi Lim ◽  
Janice Sue Wen Chan ◽  
Terence Yew Chin Tan ◽  
Bee Ping Teh ◽  
Mohd Ridzuan Mohd Abd Razak ◽  
...  

Drug repurposing is commonly employed in the search for potential therapeutic agents. Andrographis paniculata, a medicinal plant commonly used for symptomatic relief of the common cold, and its phytoconstituent andrographolide, have been repeatedly identified as potential antivirals against SARS-CoV-2. In light of new evidence emerging since the onset of the COVID-19 pandemic, this rapid review was conducted to identify and evaluate the current SARS-CoV-2 antiviral evidence for A. paniculata, andrographolide, and andrographolide analogs. A systematic search and screen strategy of electronic databases and gray literature was undertaken to identify relevant primary articles. One target-based in vitro study reported the 3CLpro inhibitory activity of andrographolide as being no better than disulfiram. Another Vero cell-based study reported potential SARS-CoV-2 inhibitory activity for both andrographolide and A. paniculata extract. Eleven in silico studies predicted the binding of andrographolide and its analogs to several key antiviral targets of SARS-CoV-2 including the spike protein-ACE-2 receptor complex, spike protein, ACE-2 receptor, RdRp, 3CLpro, PLpro, and N-protein RNA-binding domain. In conclusion, in silico and in vitro studies collectively suggest multi-pathway targeting SARS-CoV-2 antiviral properties of andrographolide and its analogs, but in vivo data are needed to support these predictions.


Sign in / Sign up

Export Citation Format

Share Document