scholarly journals The effect of dietary ginseng polysaccharide supplementation on the immune responses involved in porcine milk-derived esRNAs

2017 ◽  
Author(s):  
Jiajie Sun ◽  
Liyuan Yao ◽  
Ting Chen ◽  
Qianyun Xi ◽  
Yongliang Zhang

AbstractGinseng and its polysaccharides (GPS) have been well known as an immune modulator. This study was conducted to investigate the effects of dietary supplemental GPS on the immune responses involved in sow’s milk-derived exosomal shuttle RNAs (esRNAs) using RNA-Seq and miRNA-Seq. Of the 213 identified miRNA types, a total of 26 conserved miRNAs were differently expressed in response to GPS supplementation, including 10 up-regulated and 16 down-regulated miRNAs in GPS feeding group. In addition, exosomal transcriptome analysis identified 14,696 protein-coding genes in sow’s milk exosomes, and 283 genes with 204 and 79 candidates showing up and down-regulation were significantly responded to GPS supplementation. Integrated analysis of each differently expressed miRNA with significantly expressed genes further revealed the presence of 51 highly conserved miRNA-gene interactions that were annotated to be related to immunoregulatory functions. This work provided an important advance in the functional identification of dietary GPS supplementation and more fundamental information about how GPS promoted the immune response and healthy growth of the infant from mothers at molecular levels.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Zhu ◽  
Yong Yu ◽  
Jun Liu ◽  
Kaiming Ren

BackgroundThe establishment of immunotherapy has led to a new era in oncotherapy. But the signature of immune-related genes (IRGs) in LUAD remains to be elucidated. Here we use integrated analysis to identify IRGs roles in immune signature and detect their relationship with competing endogenous RNA (ceRNA) networks in LUAD progression.MethodsBy analyzing the RNA-seq data from different platforms, we recognized the differentially expressed genes (DEGs) of each platform and screened out the top 20 hub IRGs related to immune responses. Then, we applied the CIBERSORT algorithm to explore the landscape of tumor-infiltrating immune cells (TILs) in LUAD and their connection with hub genes. Next, we predicted and validated the upstream miRNAs and lncRNAs according to their expression and prognostic roles. Finally, we constructed and validated an immune-related ceRNA network by co-expression analysis.ResultsA total of 71 IRGs were identified among 248 DEGs, which play key roles in immune responses. CIBERSORT analysis showed that six hub genes were closely related to TILs, such as SPP1 and naive B cells (R = −0.17), TEK and resting mast cells (R = 0.37). Stepwise prediction and validation from mRNA to lncRNA, including 6 hub genes, 5 miRNAs, and 9 lncRNAs, were applied to construct a ceRNA network. Ultimately, we confirmed the TMPO-AS1/miR-126-5p/SPP1 and CARD8-AS1/miR-21-5p/TEK as immune-related ceRNA networks in LUAD progression.ConclusionWe elucidated two immune-related ceRNA networks in LUAD progression, which can be considered as immunotherapy targets for this disease.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Junxiao Ren ◽  
Weihua Tian ◽  
Keren Jiang ◽  
Zhang Wang ◽  
Dandan Wang ◽  
...  

Abstract Background Estrogen plays an essential role in female development and reproductive function. In chickens, estrogen is critical for lipid metabolism in the liver. The regulatory molecular network of estrogen in chicken liver is poorly understood. To identify estrogen-responsive genes and estrogen functional sites on a genome-wide scale, we determined expression profiles of mRNAs, lncRNAs, and miRNAs in estrogen-treated ((17β-estradiol)) and control chicken livers using RNA-Sequencing (RNA-Seq) and studied the estrogen receptor α binding sites by ChIP-Sequencing (ChIP-Seq). Results We identified a total of 990 estrogen-responsive genes, including 962 protein-coding genes, 11 miRNAs, and 17 lncRNAs. Functional enrichment analyses showed that the estrogen-responsive genes were highly enriched in lipid metabolism and biological processes. Integrated analysis of the data of RNA-Seq and ChIP-Seq, identified 191 genes directly targeted by estrogen, including 185 protein-coding genes, 4 miRNAs, and 2 lncRNAs. In vivo and in vitro experiments showed that estrogen decreased the mRNA expression of PPARGC1B, which had been reported to be linked with lipid metabolism, by directly increasing the expression of miR-144-3p. Conclusions These results increase our understanding of the functional network of estrogen in chicken liver and also reveal aspects of the molecular mechanism of estrogen-related lipid metabolism.


2021 ◽  
Vol 22 (14) ◽  
pp. 7298
Author(s):  
Izabela Rudzińska ◽  
Małgorzata Cieśla ◽  
Tomasz W. Turowski ◽  
Alicja Armatowska ◽  
Ewa Leśniewska ◽  
...  

The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.


2021 ◽  
Vol 22 (5) ◽  
pp. 2683
Author(s):  
Princess D. Rodriguez ◽  
Hana Paculova ◽  
Sophie Kogut ◽  
Jessica Heath ◽  
Hilde Schjerven ◽  
...  

Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.


2017 ◽  
Vol 77 (23) ◽  
pp. 6538-6550 ◽  
Author(s):  
Dylan Z. Kelley ◽  
Emily L. Flam ◽  
Evgeny Izumchenko ◽  
Ludmila V. Danilova ◽  
Hildegard A. Wulf ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Étienne Fafard-Couture ◽  
Danny Bergeron ◽  
Sonia Couture ◽  
Sherif Abou-Elela ◽  
Michelle S. Scott

Abstract Background Small nucleolar RNAs (snoRNAs) are mid-size non-coding RNAs required for ribosomal RNA modification, implying a ubiquitous tissue distribution linked to ribosome synthesis. However, increasing numbers of studies identify extra-ribosomal roles of snoRNAs in modulating gene expression, suggesting more complex snoRNA abundance patterns. Therefore, there is a great need for mapping the snoRNome in different human tissues as the blueprint for snoRNA functions. Results We used a low structure bias RNA-Seq approach to accurately quantify snoRNAs and compare them to the entire transcriptome in seven healthy human tissues (breast, ovary, prostate, testis, skeletal muscle, liver, and brain). We identify 475 expressed snoRNAs categorized in two abundance classes that differ significantly in their function, conservation level, and correlation with their host gene: 390 snoRNAs are uniformly expressed and 85 are enriched in the brain or reproductive tissues. Most tissue-enriched snoRNAs are embedded in lncRNAs and display strong correlation of abundance with them, whereas uniformly expressed snoRNAs are mostly embedded in protein-coding host genes and are mainly non- or anticorrelated with them. Fifty-nine percent of the non-correlated or anticorrelated protein-coding host gene/snoRNA pairs feature dual-initiation promoters, compared to only 16% of the correlated non-coding host gene/snoRNA pairs. Conclusions Our results demonstrate that snoRNAs are not a single homogeneous group of housekeeping genes but include highly regulated tissue-enriched RNAs. Indeed, our work indicates that the architecture of snoRNA host genes varies to uncouple the host and snoRNA expressions in order to meet the different snoRNA abundance levels and functional needs of human tissues.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Geneviève Bart ◽  
Daniel Fischer ◽  
Anatoliy Samoylenko ◽  
Artem Zhyvolozhnyi ◽  
Pavlo Stehantsev ◽  
...  

Abstract Background The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles. Results We used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with those commonly colonizing the human upper body and arm skin. Small RNA-seq from EV-enriched pooled sweat RNA resulted in 74% of the trimmed reads mapped to the human genome, with 29% corresponding to unannotated regions. Over 70% of the RNA reads mapping to an annotated region were tRNA, while misc. RNA (18,5%), protein coding RNA (5%) and miRNA (1,85%) were much less represented. RNA-seq from individually processed EV-enriched sweat collection generally resulted in fewer percentage of reads mapping to the human genome (7–45%), with 50–60% of those reads mapping to unannotated region of the genome and 30–55% being tRNAs, and lower percentage of reads being rRNA, LincRNA, misc. RNA, and protein coding RNA. Conclusions Our data demonstrates that sweat, as all other body fluids, contains a wealth of nucleic acids, including DNA and RNA of human and microbial origin, opening a possibility to investigate sweat as a source for biomarkers for specific health parameters.


Sign in / Sign up

Export Citation Format

Share Document