scholarly journals Daisyfield gene drive systems harness repeated genomic elements as a generational clock to limit spread

2017 ◽  
Author(s):  
John Min ◽  
Charleston Noble ◽  
Devora Najjar ◽  
Kevin M. Esvelt

AbstractMethods of altering wild populations are most useful when inherently limited to local geographic areas. Here we describe a novel form of gene drive based on the introduction of multiple copies of an engineered ‘daisy’ sequence into repeated elements of the genome. Each introduced copy encodes guide RNAs that target one or more engineered loci carrying the CRISPR nuclease gene and the desired traits. When organisms encoding a drive system are released into the environment, each generation of mating with wild-type organisms will reduce the average number of the guide RNA elements per ‘daisyfield’ organism by half, serving as a generational clock. The loci encoding the nuclease and payload will exhibit drive only as long as a single copy remains, placing an inherent limit on the extent of spread.

2017 ◽  
Author(s):  
John Min ◽  
Charleston Noble ◽  
Devora Najjar ◽  
Kevin M. Esvelt

AbstractAn ideal gene drive system to alter wild populations would 1) exclusively affect organisms within the political boundaries of consenting communities, and 2) be capable of restoring any engineered population to its original genetic state. Here we describe ‘daisy quorum’ drive systems that meet these criteria by combining daisy drive with underdominance. A daisy quorum drive system is predicted to spread through a population until all of its daisy elements have been lost, at which point its fitness becomes frequency-dependent: mostly altered populations become fixed for the desired change, while engineered genes at low frequency are swiftly eliminated by natural selection. The result is an engineered population surrounded by wild-type organisms with limited mixing at the boundary. Releasing large numbers of wild-type organisms or a few bearing a population suppression element can reduce the engineered population below the quorum, triggering elimination of all engineered sequences. In principle, the technology can restore any drive-amenable population carrying engineered genes to wild-type genetics. Daisy quorum systems may enable efficient, community-supported, and genetically reversible ecological engineering.SummaryLocal communities should be able to control their own environments without forcing those choices on others. Ideally, each community could reversibly alter local wild organisms in ways that cannot spread beyond their own boundaries, and any engineered population could be restored to its original genetic state. We've invented a 'daisy quorum' drive system that appears to meet these criteria.“Daisy” refers to a daisy drive, which typically uses a daisy-chain of linked genes to spread a change through a local population while losing links every generation until it stops spreading. “Quorum” reflects the system's ability to “vote” on whether a local population should be altered or not: once all daisy elements are lost, it favors replication by the altered version or the original depending on which is more abundant in the local area. Put together, they result in a change that first spreads through a local population, then either becomes locally prevalent is eliminating, inhibiting mixing at the boundary. All organisms in the target population are altered, but changes are unable to spread much beyond that area due to being greatly outnumbered by wild-type organisms and consequently less able to replicate.We haven't yet performed any experiments involving daisy quorum systems. Rather, we’re describing what we intend to do, including the safeguards we will use and our assessment of risks, in the hope that others will evaluate our plans and tell us if there's anything wrong that we missed. We hope that all researchers working on gene drive systems - and other technologies that could impact the shared environment - will similarly pre-register their plans. Sharing plans can reduce needless duplication, accelerate progress, and make the proposed work safer for everyone.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Andrés Valderrama ◽  
Surashree S. Kulkarni ◽  
Victor Nizet ◽  
Ethan Bier

AbstractGene-drive systems in diploid organisms bias the inheritance of one allele over another. CRISPR-based gene-drive expresses a guide RNA (gRNA) into the genome at the site where the gRNA directs Cas9-mediated cleavage. In the presence of Cas9, the gRNA cassette and any linked cargo sequences are copied via homology-directed repair (HDR) onto the homologous chromosome. Here, we develop an analogous CRISPR-based gene-drive system for the bacterium Escherichia coli that efficiently copies a gRNA cassette and adjacent cargo flanked with sequences homologous to the targeted gRNA/Cas9 cleavage site. This “pro-active” genetic system (Pro-AG) functionally inactivates an antibiotic resistance marker on a high copy number plasmid with ~ 100-fold greater efficiency than control CRISPR-based methods, suggesting an amplifying positive feedback loop due to increasing gRNA dosage. Pro-AG can likewise effectively edit large plasmids or single-copy genomic targets or introduce functional genes, foreshadowing potential applications to biotechnology or biomedicine.


2019 ◽  
Vol 116 (17) ◽  
pp. 8275-8282 ◽  
Author(s):  
Charleston Noble ◽  
John Min ◽  
Jason Olejarz ◽  
Joanna Buchthal ◽  
Alejandro Chavez ◽  
...  

If they are able to spread in wild populations, CRISPR-based gene-drive elements would provide new ways to address ecological problems by altering the traits of wild organisms, but the potential for uncontrolled spread tremendously complicates ethical development and use. Here, we detail a self-exhausting form of CRISPR-based drive system comprising genetic elements arranged in a daisy chain such that each drives the next. “Daisy-drive” systems can locally duplicate any effect achievable by using an equivalent self-propagating drive system, but their capacity to spread is limited by the successive loss of nondriving elements from one end of the chain. Releasing daisy-drive organisms constituting a small fraction of the local wild population can drive a useful genetic element nearly to local fixation for a wide range of fitness parameters without self-propagating spread. We additionally report numerous highly active guide RNA sequences sharing minimal homology that may enable evolutionarily stable daisy drive as well as self-propagating CRISPR-based gene drive. Especially when combined with threshold dependence, daisy drives could simplify decision-making and promote ethical use by enabling local communities to decide whether, when, and how to alter local ecosystems.


2018 ◽  
Author(s):  
Yao Yan ◽  
Gregory C. Finnigan

ABSTRACTThe discovery of CRISPR/Cas gene editing has allowed for major advances in many biomedical disciplines and basic research. One arrangement of this biotechnology, a nuclease-based gene drive, can rapidly deliver a genetic element through a given population and studies in fungi and metazoans have demonstrated the success of such a system. This methodology has the potential to control biological populations and contribute to eradication of insect-borne diseases, agricultural pests, and invasive species. However, there remain challenges in the design, optimization, and implementation of gene drives including concerns regarding biosafety, containment, and control/inhibition. Given the numerous gene drive arrangements possible, there is a growing need for more advanced designs. In this study, we use budding yeast to develop an artificial multi-locus gene drive system. Our minimal setup requires only a single copy of S. pyogenes Cas9 and three guide RNAs to propagate three separate gene drives. We demonstrate how this system could be used for targeted allele replacement of native genes and to suppress NHEJ repair systems by modifying DNA Ligase IV. A multi-locus gene drive configuration provides an expanded suite of options for complex attributes including pathway redundancy, combatting evolved resistance, and safeguards for control, inhibition, or reversal of drive action.


2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Jan-Niklas Runge ◽  
Anna K. Lindholm

Meiotic drivers are genetic entities that increase their own probability of being transmitted to offspring, usually to the detriment of the rest of the organism, thus ‘selfishly’ increasing their fitness. In many meiotic drive systems, driver-carrying males are less successful in sperm competition, which occurs when females mate with multiple males in one oestrus cycle (polyandry). How do drivers respond to this selection? An observational study found that house mice carrying the t haplotype, a meiotic driver, are more likely to disperse from dense populations. This could help the t avoid detrimental sperm competition, because density is associated with the frequency of polyandry. However, no controlled experiments have been conducted to test these findings. Here, we confirm that carriers of the t haplotype are more dispersive, but we do not find this to depend on the local density. t -carriers with above-average body weight were particularly more likely to disperse than wild-type mice. t -carrying mice were also more explorative but not more active than wild-type mice. These results add experimental support to the previous observational finding that the t haplotype affects the dispersal phenotype in house mice, which supports the hypothesis that dispersal reduces the fitness costs of the t .


2016 ◽  
Author(s):  
Charleston Noble ◽  
Jason Olejarz ◽  
Kevin M. Esvelt ◽  
George M. Church ◽  
Martin A. Nowak

AbstractThe alteration of wild populations has been discussed as a solution to a number of humanity’s most pressing ecological and public health concerns. Enabled by the recent revolution in genome editing, CRISPR gene drives, selfish genetic elements which can spread through populations even if they confer no advantage to their host organism, are rapidly emerging as the most promising approach. But before real-world applications are considered, it is imperative to develop a clear understanding of the outcomes of drive release in nature. Toward this aim, we mathematically study the evolutionary dynamics of CRISPR gene drives. We demonstrate that the emergence of drive-resistant alleles presents a major challenge to previously reported constructs, and we show that an alternative design which selects against resistant alleles greatly improves evolutionary stability. We discuss all results in the context of CRISPR technology and provide insights which inform the engineering of practical gene drive systems.


2018 ◽  
Author(s):  
Charleston Noble ◽  
Ben Adlam ◽  
George M Church ◽  
Kevin M Esvelt ◽  
Martin A Nowak

2015 ◽  
Author(s):  
James E DiCarlo ◽  
Alejandro Chavez ◽  
Sven L Dietz ◽  
Kevin M Esvelt ◽  
George M Church

Inheritance-biasing “gene drives” may be capable of spreading genomic alterations made in laboratory organisms through wild populations. We previously considered the potential for RNA-guided gene drives based on the versatile CRISPR/Cas9 genome editing system to serve as a general method of altering populations. Here we report molecularly contained gene drive constructs in the yeast Saccharomyces cerevisiae that are typically copied at rates above 99% when mated to wild yeast. We successfully targeted both non-essential and essential genes, showed that the inheritance of an unrelated “cargo” gene could be biased by an adjacent drive, and constructed a drive capable of overwriting and reversing changes made by a previous drive. Our results demonstrate that RNA-guided gene drives are capable of efficiently biasing inheritance when mated to wild-type organisms over successive generations.


2021 ◽  
Author(s):  
William R Reid ◽  
Jingyi Lin ◽  
Adeline E Williams ◽  
Rucsanda Juncu ◽  
Ken E Olson ◽  
...  

The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such an approach requires a mechanism to spread these antiviral effectors through a population, for example, by using CRISPR/Cas9-based gene drive systems. Here we report an autonomous single-component gene drive system in Ae. aegypti that is designed for persistent population replacement. Critical to the design of a single-locus autonomous gene drive is that the selected genomic locus be amenable to both gene drive and the appropriate expression of the antiviral effector. In our study, we took a reverse engineering approach to target two genomic loci ideal for the expression of antiviral effectors and further investigated the use of three promoters for Cas9 expression (nanos, β2-tubulin, or zpg) for the gene drive. We found that both promoter selection and genomic target site strongly influenced the efficiency of the drive, resulting in 100% inheritance in some crosses. We also observed the formation of inheritable gene drive blocking indels (GDBI) in the genomic locus with the highest levels of gene drive. Overall, our drive system forms a platform for the further testing of driving antipathogen effector genes through Ae. aegypti populations.


2016 ◽  
Author(s):  
John M. Marshall ◽  
Anna Buchman ◽  
Héctor M. Sánchez C. ◽  
Omar S. Akbari

AbstractThe use of homing-based gene drive systems to modify or suppress wild populations of a given species has been proposed as a solution to a number of significant ecological and public health related problems, including the control of mosquito-borne diseases. The recent development of a CRISPR-Cas9-based homing system for the suppression ofAnopheles gambiae, the main African malaria vector, is encouraging for this approach; however, with current designs, the slow emergence of homing-resistant alleles is expected to result in suppressed populations rapidly rebounding, as homing-resistant alleles have a significant fitness advantage over functional, population-suppressing homing alleles. To explore this concern, we develop a mathematical model to estimate tolerable rates of homing-resistant allele generation to suppress a wild population of a given size. Our results suggest that, to achieve meaningful population suppression, tolerable rates of resistance allele generation are orders of magnitude smaller than those observed for current designs for CRISPR-Cas9-based homing systems. To remedy this, we propose a homing system architecture in which guide RNAs (gRNAs) are multiplexed, increasing the effective homing rate and decreasing the effective resistant allele generation rate. Modeling results suggest that the size of the population that can be suppressed increases exponentially with the number of multiplexed gRNAs and that, with six multiplexed gRNAs, a mosquito species could potentially be suppressed on a continental scale. We also demonstrate successful multiplexingin vivoinDrosophila melanogasterusing a ribozyme-gRNA-ribozyme (RGR) approach – a strategy that could readily be adapted to engineer stable, homing-based suppression drives in relevant organisms.


Sign in / Sign up

Export Citation Format

Share Document