scholarly journals Enzymes and Substrates Are Balanced at Minimal Combined Mass Concentration in vivo

2017 ◽  
Author(s):  
Hugo Dourado ◽  
Veronica G. Maurino ◽  
Martin J. Lercher

AbstractA fundamental problem in biology is how cells organize their resource investment. Cellular metabolism, for example, typically involves hundreds of enzymes and metabolites, but it is unclear according to which principles their concentrations are set. Reasoning that natural selection will drive cells towards achieving a given physiological state at minimal cost, we derive a general equation that predicts the concentration of a metabolite from the concentration of the most abundant and costly enzyme consuming it. Simulations of cellular growth as well as experimental data demonstrate that costs are approximately proportional to molecular masses. For effectively irreversible reactions, the cell maximizes its metabolic efficiency by investing equally into substrate and unbound enzyme molecules. Without fitting any free parameters, the resulting model predicts in vivo substrate concentrations from enzyme concentrations and substrate affinities with high accuracy across data from E. coli and diverse eukaryotes (R2=0.79, geometric mean fold-error 1.74). The corresponding organizing principle – the minimization of the summed mass concentrations of solutes – may facilitate reducing the complexity of kinetic models and will contribute to the design of more efficient synthetic cellular systems.

2019 ◽  
Author(s):  
Walter Beata Maria ◽  
Szulc Aneta ◽  
Glinkowska Monika

ABSTRACTPrs (phosphoribosyl pyrophosphate synthase) is a broadly conserved protein that synthesises 5-phosphoribosyl 1-pyrophospate (PRPP); a substrate for biosynthesis of at least 10 enzymatic pathways including biosynthesis of DNA building blocks – purines and pyrimidines. In Escherichia coli, it is a protein of homo-hexameric quaternary structure, which can be challenging to work with, due to frequent aggregation and activity loss. Several studies showed brief purification protocols for various bacterial PRPP synthases, in most cases involving ammonium sulfate precipitation.Here, we provide a protocol for expression of E. coli Prs protein in Rosetta (DE3) and BL21 (DE3) pLysE strains and a detailed method for His-Prs and untagged Prs purification on nickel affinity chromatography columns. This protocol allows purification of proteins with high yield, purity and activity. We report here N-terminally His-tagged protein fusions, stable and active, providing that the temperature around 20 °C is maintained at all stages, including centrifugation. Moreover, we successfully applied this method to purify two enzyme variants with K194A and G9S alterations. The K194A mutation in conserved lysine residue results in protein variant unable to synthetize PRPP, while the G9S alteration originates from prs-2 allele variant which was previously related to thermo-sensitive growth. His-PrsG9S protein purified here, exhibited comparable activity as previously observed in-vivo suggesting the proteins purified with our protocol resemble their physiological state.The protocol for Prs purification showed here indicates guidance to improve stability and quality of the protein and to ensure more reliable results in further assays in-vitro.


1991 ◽  
Vol 54 (2) ◽  
pp. 90-93 ◽  
Author(s):  
CAROLINE E. O'NEILL ◽  
GARY K. BISSONNETTE

Four strains of Escherichia coli were examined for response to heat stress (60°C) as a function of physiological age and antecedent oxygen growth conditions. Exponential phase cells were more susceptible to heat than cells grown to the stationary phase. Anaerobically grown, exponential phase cells were more susceptible to thermal stress than were cells grown to a similar physiological state but under aerobic conditions. In the case of stationary phase cells, differences in response to heat stress as related to prior oxygen growth conditions were equivocal. Repair characteristics of thermally injured cells were also examined. Cells grown anaerobically prior to heat stress required 1.5 h longer than their aerobically grown counterparts to complete repair. These findings suggest that antecedent oxygen growth conditions influence the response of E. coli to thermal stress and perhaps, more generally, that persistence of environmentally stressed enteric microorganisms must be considered in relation to prior oxygen growth conditions in vivo.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 19-26 ◽  
Author(s):  
G. J. Medema ◽  
I. A. van Asperen ◽  
J. M. Klokman-Houweling ◽  
A. Nooitgedagt ◽  
M. J. W. van de Laar ◽  
...  

This pilot study was carried out to determine the relationship between microbiological water quality parameters and the occurrence of health complaints among triathletes. Data were collected at an Olympic distance triathlon (n=314) and a run-bike-run (n=81; controls for exposure to fresh water). At the time of the triathlon, the concentrations of Escherichia coli , thermotolerant coliforms, faecal streptococci, entero- and reoviruses, F-specific RNA phages, Salmonella, Campylobacter, Aeromonas, Plesiomonas shigelloides, Pseudomonas aeruginosa and Staphylococcus aureus were examined over the swimming course. Information on the occurrence of health complaints during the competition and in the week thereafter was collected through a written questionnaire. The results show that triathletes and run-bike-runners are comparable with respect to factors other than water exposure (age, sex, training history, physical stress, lower intestinal health complaints during the competition) that may influence the occurrence of health complaints in the week after the competition. Triathletes and run-bike-runners reported gastro-intestinal (7.7% vs 2.5%), respiratory (5.5% vs 3.7%), skin/mucosal (2.6% vs 1.2%), general (3.5% vs 1.2%) and total symptoms (14.8% vs 7.4%) in the week after the event. The health risks for triathletes for all symptom groups are not significantly higher than for run-bike-runners. The geometric mean concentration of faecal indicator bacteria is relatively low: E. coli 170/100 ml; faecal streptococci 13/100 ml, enteroviruses were present at concentrations of 0.1/l. The group of triathletes was homogeneusly and relatively intensely exposed to water; they all swam in the same body of water at the same time and 75% reported to have swallowed freshwater. It was concluded that this study design is suitable to study the relationship between health complaints and microbiological water quality. In the summers of 1993 and 1994, a study will be carried out concerning several run-bike-runs and triathlons in freshwaters of different quality.


1997 ◽  
Vol 35 (11-12) ◽  
pp. 157-163 ◽  
Author(s):  
G. J. Medema ◽  
I. A. van Asperen ◽  
A. H. Havelaar

As part of a prospective cohort study among triathletes to determine a relationship between the microbiological quality of fresh bathing water and the risk of acquiring an intestinal infection, the exposure of the triathletes to microbiological contaminants was assessed. Waters were collected at seven triathlons (swimming course 1–1.5km) held in the summer of 1993 and 1994 to have a range of water qualities. All were influenced by sewage effluents, most also by agricultural run-off. Samples were collected several weeks before the event to establish a sampling programme (1993) and during the actual exposure of the triathletes (1993 and 1994) and examined for thermotolerant coliforms alone (samples preceding the event) and for E. coli, faecal enterococci, Staphylococcus aureus, F-specific RNAphages, enteroviruses (1993 and 1994) and for thermophilic Campylobacter, Salmonella, Aeromonas, Plesiomonas shigelloides and Pseudomonas aeruginosa (1993). The samples taken in the weeks before the exposure showed significant differences in thermotolerant coliform concentration between locations, depths and times. Also during swimmer exposure, significant differences occurred in microorganism levels at the different sampling points over the swimming course. As the triathletes swam as a group, they were exposed to approximately the same water at the same time. The geometric mean concentration was used to characterise each site. In the epidemiological study, the risk of an intestinal infection correlated with the concentration of thermotolerant coliforms and E. coli but not with the other parameters. The geometric mean concentration of thermotolerant coliforms at the triathlons ranged from 11–330/100mL and 54–1,200/100mL E. coli. Ranking of the seven sites by faecal pollution level, based on the geometric mean concentration of a faecal indicator, resulted in a different ranking for each indicator. At the fresh water sites studied, only the ratio between the geometric mean density of E. coli and thermotolerant coliforms was constant. The ratio between the other parameters related to faecal pollution (faecal enterococci, F-specific RNA phages, enteroviruses) varied considerably. Water quality standards relating to faecal pollution can only be based on parameters that show a significant correlation with risk of intestinal illness.


2020 ◽  
Vol 21 (4) ◽  
pp. 316-324
Author(s):  
Manica Negahdaripour ◽  
Navid Nezafat ◽  
Reza Heidari ◽  
Nasrollah Erfani ◽  
Nasim Hajighahramani ◽  
...  

Background: L2-based Human Papillomavirus (HPV) prophylactic vaccines, containing epitopes from HPV minor capsid proteins, are under investigation as second-generation HPV vaccines. No such vaccine has passed clinical trials yet, mainly due to the low immunogenicity of peptide vaccines; so efforts are being continued. A candidate vaccine composed of two HPV16 L2 epitopes, flagellin and a Toll-Like Receptor (TLR) 4 agonist (RS09) as adjuvants, and two universal T-helper epitopes was designed in silico in our previous researches. Methods: The designed vaccine construct was expressed in E. coli BL21 (DE3) and purified through metal affinity chromatography. Following mice vaccination, blood samples underwent ELISA and flow cytometry analyses for the detection of IgG and seven Th1 and Th2 cytokines. Results: Following immunization, Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-5, IL-10) type cytokines, as well as IgG, were induced significantly compared with the PBS group. Significant increases in IFN-γ, IL-2, and IL-5 levels were observed in the vaccinated group versus Freund’s adjuvant group. Conclusion: The obtained cytokine induction profile implied both cellular and humoral responses, with a more Th-1 favored trend. However, an analysis of specific antibodies against L2 is required to confirm humoral responses. No significant elevation in inflammatory cytokines, (IL-6 and TNF-α), suggested a lack of unwanted inflammatory side effects despite using a combination of two TLR agonists. The designed construct might be capable of inducing adaptive and innate immunity; nevertheless, comprehensive immune tests were not conducted at this stage and will be a matter of future work.


2001 ◽  
Vol 90 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Leonardo C. Clavijo ◽  
Mary B. Carter ◽  
Paul J. Matheson ◽  
Mark A. Wilson ◽  
William B. Wead ◽  
...  

In vivo pulmonary arterial catheterization was used to determine the mechanism by which platelet-activating factor (PAF) produces pulmonary edema in rats. PAF induces pulmonary edema by increasing pulmonary microvascular permeability (PMP) without changing the pulmonary pressure gradient. Rats were cannulated for measurement of pulmonary arterial pressure (Ppa) and mean arterial pressure. PMP was determined by using either in vivo fluorescent videomicroscopy or the ex vivo Evans blue dye technique. WEB 2086 was administered intravenously (IV) to antagonize specific PAF effects. Three experiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAF induced systemic hypotension with a decrease in Ppa. PMP increased after IV PAF in a dose-related manner. Topical PAF increased PMP but decreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa (50 ± 3%) increased during E. coli bacteremia. PAF-receptor blockade prevents changes in Ppa and PMP after both topical PAF and E. coli bacteremia. PAF, which has been shown to mediate pulmonary edema in prior studies, appears to act in the lung by primarily increasing microvascular permeability. The presence of PAF might be prerequisite for pulmonary vascular constriction during gram-negative bacteremia.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 513-521
Author(s):  
Nancy J Trun ◽  
Thomas J Silhavy

ABSTRACT The prlC gene of E. coli was originally identified as an allele, prlC1, which suppresses certain signal sequence mutations in the genes for several exported proteins. We have isolated six new alleles of prlC that also confer this phenotype. These mutations can be placed into three classes based on the degree to which they suppress the lamBsignal sequence deletion, lamBs78. Genetic mapping reveals that the physical location of the mutations in prlC correlates with the strength of the suppression, suggesting that different regions of the gene can be altered to yield a suppressor phenotype. We also describe an in vivo cloning procedure using λplacMu9H. The procedure relies on transposition and illegitimate recombination to generate a specialized transducing phage that carries prlC1. This method should be applicable to any gene for which there is a mutant phenotype.


Sign in / Sign up

Export Citation Format

Share Document