scholarly journals HIGH FIDELITY DETECTION OF CROP BIOMASS QTL FROM LOW-COST IMAGING IN THE FIELD

2017 ◽  
Author(s):  
Darshi Banan ◽  
Rachel Paul ◽  
Max Feldman ◽  
Mark Holmes ◽  
Hannah Schlake ◽  
...  

Above-ground biomass production is a key target for studies of crop abiotic stress tolerance, disease resistance and yield improvement. However, biomass is slow and laborious to evaluate in the field using traditional destructive methods. High-throughput phenotyping (HTP) is widely promoted as a potential solution that can rapidly and non-destructively assess plant traits by exploiting advances in sensor and computing technology. A key potential application of HTP is for quantitative genetics studies that identify loci where allelic variation is associated with variation in crop production. And, the value of performing such studies in the field, where environmental conditions match that of production farming, is recognized. To date, HTP of biomass productivity in field trials has largely focused on expensive and complex methods, which – even if successful – will limit their use to a subset of wealthy research institutions and companies with extensive research infrastructure and highly-trained personnel. Even with investment in ground vehicles, aerial vehicles and gantry systems ranging from thousands to millions of dollars, there are very few examples where Quantitative trait loci (QTLs) detected by HTP of biomass production in a field-grown crop are shown to match QTLs detected by direct measures of biomass traits by destructive harvest techniques. Until such proof of concept for HTP proxies is generated it is unlikely to replace existing technology and be widely adopted. Therefore, there is a need for methods that can be used to assess crop performance by small teams with limited training and at field sites that are remote or have limited infrastructure. Here we use an inexpensive and simple, miniaturized system of hemispherical imaging and light attenuation modeling to identify the same set of key QTLs for biomass production as traditional destructive harvest methods applied to a field-grown Setaria mapping population. This provides a case study of a HTP technology that can deliver results for QTL mapping without high costs or complexity.

2021 ◽  
Author(s):  
◽  
Alexander Feary

<p>The restoration of Nauru’s mined areas is fundamental to the future wellbeing of the people and ecosystems of Nauru. Extensive open cast phosphate mining on Nauru over the last 100 years has led to soil losses and landscape degradation to the extent that over 70% of this South-Western Pacific island state is now uninhabitable and almost all productive land has been lost. Significant landscape degradation has occurred and as a consequence the soils that remain are insufficient in volume and quality to achieve the Government’s restoration goals which support the long-term development of Nauru and the well-being of its people. The aim of this research is to evaluate aspects of cover-crop use as a means for soil restoration in Nauru. This research evaluates biomass production, phytoremediation potential, and germination success for a range of species in Nauruan soils. Field trials exploring biomass production and cadmium phytoextraction were performed, as was an experiment assessing the effects of cadmium on germination success. It was found that, in the circumstances assessed, biomass productivity was significantly determined by species, mulch use, soil type, and to a small degree – cadmium. Phytoextraction was significantly determined by tissue type. Germination success was not determined by soil cadmium, but soil type was a significant factor.</p>


2015 ◽  
Vol 45 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Altevir Signor ◽  
Arcangelo Augusto Signor ◽  
Wilson Rogério Boscolo ◽  
Adilson Reidel ◽  
Sidnei Klein ◽  
...  

This study evaluated the periphyton production on artificial substrates considering it as a source of low cost live food for fish. Blades of artificial substrates such as wood, black plastic, acrylic, fiberglass, ceramics and glass (all with 144cm2 blades, 24 for each substrate) were submerged 20.0cm below the water column for 35 days in the winter and 42 days in the summer. The blades were randomly installed in 200m3 pond and evaluated for the biomass production at different phases during the summer and winter. Four blades of each substrate were collected weekly, and the periphytic community was carefully scraped with a spatula and fixed in 4% formaldehyde. The periphytic biomass productivity was evaluated by artificial substrate area and per day. The results evidenced the characteristic periodicity in periphyton biomass production and a significant variability in the collect period and season in the different artificial substrates used. Ceramic and wood showed the best results in the summer while wood showed the best results in the winter. The priphyton biomass productions differ among periods, substrates and seasons. Wood and ceramics could be indicated for periphyton biomass production in either winter or summer.


2021 ◽  
pp. 57-61
Author(s):  
Т. V. Rodina ◽  
V. I. Zhuzhukin ◽  
А. N. Astashov

In order to develop stable feed agrophytocenoses, the most promising and low-cost direction in feed production is the cultivation of companion sowings. In order to study the productivity of complex cenoses of annual feed crops together with soybean there were field trials laid on the experimental plots of the FSBSI Russian Research and Project-technological Institute of sorghum and maize “Rossorgo” in 2015–2017. The purpose of the current study was to substantiate scientifically and practically the development of highly productive agrophytocenoses of annual feed crops in companion sowings with soybean. The analysis of green and dry biomass productivity values showed that in singlemillet species crops, the productivity was higher than in companion sowings with soybean, this is explained by the lower productivity of the legume component. The highest mean productivity of aboveground biomass for three years of study (18.84 t/ha) was given by Japanese millet in its pure form. Siberian and Italian millet formed mean productivity of 16.13 and 15.60 t/ha, respectively. The current paper has presented data on productivity and has studied feed advantages of single-species and two-species sowings. The introduction of soybean in the composition of companion sowings has increased the protein percentage on 26.75–30.78% in dry biomass of feed mixtures in comparison with single-species crops. Aboveground biomass of complex agrocenoses contained more oil, ash and less fiber. According to the variants of the trial, the oil content varied from 2.15 to 5.40%, with the maximum amount identified in soybean in its pure form (5.40%), and the minimum value of this trait was obtained in Japanese millet in its pure form (2.15%). It is worth noting that it is advisable to cultivate annual crops for feed purposes together with soybean, since the feed value of the cutting mass significantly improves.


2012 ◽  
Vol 599 ◽  
pp. 608-613
Author(s):  
Jen Jeng Chen ◽  
Yu Ru Li ◽  
Meei Fang Shue ◽  
Li Ho Tseng ◽  
Wen Liang Lai

Use of microalgae to remove inorganic nutrients from wastewater and their great potential for low-cost biomass production is gaining attraction. The effect of piggery wastewater content, aeration rate, cultivation temperature, and light intensity on nitrogen and phosphorus removal and biomass production were studied by using a Box-Behnken experimental design under full factorial methodology. Under experimental conditions considered cultures with aeration increased the ammonium and orthophosphate removal efficiency up to an average of 65.3±17 % and 51±7.2 %, respectively and an increase of biomass productivity ranging from 20.8±11 mg/L.d to 52.3±5.5 mg/L.d. The aeration rate was the most important factor influencing the nutrients removal and biomass production.


2021 ◽  
Author(s):  
◽  
Alexander Feary

<p>The restoration of Nauru’s mined areas is fundamental to the future wellbeing of the people and ecosystems of Nauru. Extensive open cast phosphate mining on Nauru over the last 100 years has led to soil losses and landscape degradation to the extent that over 70% of this South-Western Pacific island state is now uninhabitable and almost all productive land has been lost. Significant landscape degradation has occurred and as a consequence the soils that remain are insufficient in volume and quality to achieve the Government’s restoration goals which support the long-term development of Nauru and the well-being of its people. The aim of this research is to evaluate aspects of cover-crop use as a means for soil restoration in Nauru. This research evaluates biomass production, phytoremediation potential, and germination success for a range of species in Nauruan soils. Field trials exploring biomass production and cadmium phytoextraction were performed, as was an experiment assessing the effects of cadmium on germination success. It was found that, in the circumstances assessed, biomass productivity was significantly determined by species, mulch use, soil type, and to a small degree – cadmium. Phytoextraction was significantly determined by tissue type. Germination success was not determined by soil cadmium, but soil type was a significant factor.</p>


Author(s):  
Anna Langstroff ◽  
Marc C. Heuermann ◽  
Andreas Stahl ◽  
Astrid Junker

AbstractRising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant‘s phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.


2020 ◽  
Vol 3 (1) ◽  
pp. 93
Author(s):  
Iulian Constantin Dănilă

Short rotation forestry (SRF) provides an important supply of biomass for investors in this area. In the NE (North-East) part of Romania at the present time are installed over 800 Ha of this kind of crops. The SRF enjoys the support through environmental policies, in relation to climate change and the provisions of the Kyoto Protocol to reduce the concentration of CO2 in the atmosphere. A precise estimate of biomass production is necessary for the sustainable planning of forest resources and for the exchange of energy in ecosystems. The use of the terrestrial laser scanner (TLS) in estimating the production of above ground wood biomass (AGWB) of short rotation forestry (SRF) brings an important technological leap among indirect (non-destructive) methods. TLS technology is justified when destructive methods become difficult to implement, and allometric equations do not provide accurate information. The main purpose of the research is to estimate the biomass productivity on tree parts in short rotation forestry with TLS technology. Measuring the hybrid poplars crops by TLS may have the following consequences: (1) Higher accuracy of the estimate of biomass production in the SRF; (2) cost and time effective measurements over the biomass of tree parts; (3) new and validated allometric equations for SRF in NE Romania; (4) solid instrument for industry to estimate biomass. TLS technology gives accurate estimates for DBH, tree height and location, as much as the volume on segments, commercial volume or crown volume can be determined. The accuracy of these values depends on the original scan data and their co-registration. The research will contribute to the development of knowledge in the field of hybrid crops.


2020 ◽  
Vol 11 (1) ◽  
pp. 174
Author(s):  
Konstantinos P. Papadopoulos ◽  
Christina N. Economou ◽  
Athanasia G. Tekerlekopoulou ◽  
Dimitris V. Vayenas

Algal/cyanobacterial biofilm photobioreactors provide an alternative technology to conventional photosynthetic systems for wastewater treatment based on high biomass production and easy biomass harvesting at low cost. This study introduces a novel cyanobacteria-based biofilm photobioreactor and assesses its performance in post-treatment of brewery wastewater and biomass production. Two different supporting materials (glass/polyurethane) were tested to investigate the effect of surface hydrophobicity on biomass attachment and overall reactor performance. The reactor exhibited high removal efficiency (over 65%) of the wastewater’s pollutants (chemical oxygen demand, nitrate, nitrite, ammonium, orthophosphate, and total Kjeldahl nitrogen), while biomass per reactor surface reached 13.1 and 12.8 g·m−2 corresponding to 406 and 392 mg·L−1 for glass and polyurethane, respectively, after 15 days of cultivation. The hydrophilic glass surface favored initial biomass adhesion, although eventually both materials yielded complete biomass attachment, highlighting that cell-to-cell interactions are the dominant adhesion mechanism in mature biofilms. It was also found that the biofilm accumulated up to 61% of its dry weight in carbohydrates at the end of cultivation, thus making the produced biomass a suitable feedstock for bioethanol production.


2013 ◽  
Vol 85 (4) ◽  
pp. 1427-1438 ◽  
Author(s):  
MATHIAS A. CHIA ◽  
ANA T. LOMBARDI ◽  
MARIA DA GRACA G. MELAO

The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media). The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC), sterol esthers (SE), free fatty acids (FFA), aliphatic alcohols (ALC), acetone mobile polar lipids (AMPL) and phospholipids (PL) concentrations and yields were highest in the Chu medium. Triglyceride (TAG) and sterol (ST) concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.


Sign in / Sign up

Export Citation Format

Share Document