scholarly journals Spontaneous Phase Separation of Cocultured Cell Mixtures In vitro

2017 ◽  
Author(s):  
Sebastian V. Hadjiantoniou ◽  
Maxime Leblanc-Latour ◽  
Maxime Ignacio ◽  
Cory S. Lefevbre ◽  
Gary W. Slater ◽  
...  

ABSTRACTDuring Embryogenesis, cells undergo constant organizational remodelling. Biochemical and biophysical guidance cues act in tandem to guide migration and morphogenesis into distinct cellular patterns. It has been shown that various cell types will express different configurations of cellular adhesion molecules known as cadherins and integrins. Cocultured in vitro experiments have focused on revealing the extensive genetic expression profiles that modulate embryogenesis whilst overlooking the physical cell-cell and cell-substrate interactions that influence organization. We demonstrate that NIH3T3 and MDCK cells undergo a spontaneous phase separation when cocultured in vitro and that this phenomenon occurs through purely physical binding energies. A Monte Carlo simulation model of a mixture of cells with different cell-cell and cell-substrate binding energies reveals that the spontaneous phase separation occurs due to the minimization of interfacial free energy within the system. Cell-cell and cell-substrate binding plays a critical role in cell organization and is capable of phase separating different populations of cells in vitro.

1999 ◽  
Vol 112 (24) ◽  
pp. 4589-4599 ◽  
Author(s):  
F. Li ◽  
Y. Zhang ◽  
C. Wu

Integrin-linked kinase (ILK) is a ubiquitously expressed protein serine/threonine kinase that has been implicated in integrin-, growth factor- and Wnt-signaling pathways. In this study, we show that ILK is a constituent of cell-matrix focal adhesions. ILK was recruited to focal adhesions in all types of cells examined upon adhesion to a variety of extracellular matrix proteins. By contrast, ILK was absent in E-cadherin-mediated cell-cell adherens junctions. In previous studies, we have identified PINCH, a protein consisting of five LIM domains, as an ILK binding protein. We demonstrate in this study that the ILK-PINCH interaction requires the N-terminal-most ANK repeat (ANK1) of ILK and one (the C-terminal) of the two zinc-binding modules within the LIM1 domain of PINCH. The ILK ANK repeats domain, which is capable of interacting with PINCH in vitro, could also form a complex with PINCH in vivo. However, the efficiency of the complex formation or the stability of the complex was markedly reduced in the absence of the C-terminal domain of ILK. The PINCH binding defective ANK1 deletion ILK mutant, unlike the wild-type ILK, was unable to localize and cluster in focal adhesions, suggesting that the interaction with PINCH is necessary for focal adhesion localization and clustering of ILK. The N-terminal ANK repeats domain, however, is not sufficient for mediating focal adhesion localization of ILK, as an ILK mutant containing the ANK repeats domain but lacking the C-terminal integrin binding site failed to localize in focal adhesions. These results suggest that focal adhesions are a major subcellular compartment where ILK functions in intracellular signal transduction, and provide important evidence for a critical role of PINCH and integrins in regulating ILK cellular function.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1039
Author(s):  
Hana S. Fukuto ◽  
Gloria I. Viboud ◽  
Viveka Vadyvaloo

Yersinia pestis, the causative agent of plague, has a complex infectious cycle that alternates between mammalian hosts (rodents and humans) and insect vectors (fleas). Consequently, it must adapt to a wide range of host environments to achieve successful propagation. Y. pestis PhoP is a response regulator of the PhoP/PhoQ two-component signal transduction system that plays a critical role in the pathogen’s adaptation to hostile conditions. PhoP is activated in response to various host-associated stress signals detected by the sensor kinase PhoQ and mediates changes in global gene expression profiles that lead to cellular responses. Y. pestis PhoP is required for resistance to antimicrobial peptides, as well as growth under low Mg2+ and other stress conditions, and controls a number of metabolic pathways, including an alternate carbon catabolism. Loss of phoP function in Y. pestis causes severe defects in survival inside mammalian macrophages and neutrophils in vitro, and a mild attenuation in murine plague models in vivo, suggesting its role in pathogenesis. A Y. pestisphoP mutant also exhibits reduced ability to form biofilm and to block fleas in vivo, indicating that the gene is also important for establishing a transmissible infection in this vector. Additionally, phoP promotes the survival of Y. pestis inside the soil-dwelling amoeba Acanthamoeba castellanii, a potential reservoir while the pathogen is quiescent. In this review, we summarize our current knowledge on the mechanisms of PhoP-mediated gene regulation in Y. pestis and examine the significance of the roles played by the PhoP regulon at each stage of the Y. pestis life cycle.


2016 ◽  
Vol 13 (123) ◽  
pp. 20160613 ◽  
Author(s):  
Sebastian V. Hadjiantoniou ◽  
David Sean ◽  
Maxime Ignacio ◽  
Michel Godin ◽  
Gary W. Slater ◽  
...  

During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro , mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell–cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell–substrate versus cell–cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell–cell and cell–substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells.


2005 ◽  
Vol 25 (12) ◽  
pp. 5205-5214 ◽  
Author(s):  
Roy Drissen ◽  
Marieke von Lindern ◽  
Andrea Kolbus ◽  
Siska Driegen ◽  
Peter Steinlein ◽  
...  

ABSTRACT Development of red blood cells requires the correct regulation of cellular processes including changes in cell morphology, globin expression and heme synthesis. Transcription factors such as erythroid Krüppel-like factor EKLF (Klf1) play a critical role in erythropoiesis. Mice lacking EKLF die around embryonic day 14 because of defective definitive erythropoiesis, partly caused by a deficit in β-globin expression. To identify additional target genes, we analyzed the phenotype and gene expression profiles of wild-type and EKLF null primary erythroid progenitors that were differentiated synchronously in vitro. We show that EKLF is dispensable for expansion of erythroid progenitors, but required for the last steps of erythroid differentiation. We identify EKLF-dependent genes involved in hemoglobin metabolism and membrane stability. Strikingly, expression of these genes is also EKLF-dependent in primitive, yolk sac-derived, blood cells. Consistent with lack of upregulation of these genes we find previously undetected morphological abnormalities in EKLF-null primitive cells. Our data provide an explanation for the hitherto unexplained severity of the EKLF null phenotype in erythropoiesis.


Blood ◽  
2012 ◽  
Vol 119 (20) ◽  
pp. 4708-4718 ◽  
Author(s):  
Anja Troeger ◽  
Amy J. Johnson ◽  
Jenna Wood ◽  
William G. Blum ◽  
Leslie A. Andritsos ◽  
...  

Abstract Trafficking of B-cell chronic lymphocytic leukemia (CLL) cells to the bone marrow and interaction with supporting stromal cells mediates important survival and proliferation signals. Previous studies have demonstrated that deletion of Rhoh led to a delayed disease onset in a murine model of CLL. Here we assessed the impact of RhoH on homing, migration, and cell-contact dependent interactions of CLL cells. Rhoh−/− CLL cells exhibited reduced marrow homing and subsequent engraftment. In vitro migration toward the chemokines CXCL12 and CXCL13 and cell-cell interactions between Rhoh−/− CLL cells and the supporting microenvironment was reduced. In the absence of RhoH the distribution of phosphorylated focal adhesion kinase, a protein known to coordinate activation of the Rho GTPases RhoA and Rac, appeared less polarized in chemokine-stimulated Rhoh−/− CLL cells, and activation and localization of RhoA and Rac was dysregulated leading to defective integrin function. These findings in the Rhoh−/− CLL cells were subsequently demonstrated to closely resemble changes in GTPase activation observed in human CLL samples after in vitro and in vivo treatment with lenalidomide, an agent with known influence on microenvironment protection, and suggest that RhoH plays a critical role in prosurvival CLL cell-cell and cell-microenvironment interactions with this agent.


2009 ◽  
Vol 421 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Kazuaki Ohara ◽  
Ayumu Muroya ◽  
Nobuhiro Fukushima ◽  
Kazufumi Yazaki

The AS-PT (aromatic substrate prenyltransferase) family plays a critical role in the biosynthesis of important quinone compounds such as ubiquinone and plastoquinone, although biochemical characterizations of AS-PTs have rarely been carried out because most members are membrane-bound enzymes with multiple transmembrane α-helices. PPTs [PHB (p-hydroxybenzoic acid) prenyltransferases] are a large subfamily of AS-PTs involved in ubiquinone and naphthoquinone biosynthesis. LePGT1 [Lithospermum erythrorhizon PHB geranyltransferase] is the regulatory enzyme for the biosynthesis of shikonin, a naphthoquinone pigment, and was utilized in the present study as a representative of membrane-type AS-PTs to clarify the function of this enzyme family at the molecular level. Site-directed mutagenesis of LePGT1 with a yeast expression system indicated three out of six conserved aspartate residues to be critical to the enzymatic activity. A detailed kinetic analysis of mutant enzymes revealed the amino acid residues responsible for substrate binding were also identified. Contrary to ubiquinone biosynthetic PPTs, such as UBIA in Escherichia coli which accepts many prenyl substrates of different chain lengths, LePGT1 can utilize only geranyl diphosphate as its prenyl substrate. Thus the substrate specificity was analysed using chimeric enzymes derived from LePGT1 and UBIA. In vitro and in vivo analyses of the chimeras suggested that the determinant region for this specificity was within 130 amino acids of the N-terminal. A 3D (three-dimensional) molecular model of the substrate-binding site consistent with these biochemical findings was generated.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 427
Author(s):  
Daniela Grob ◽  
Iván Conejeros ◽  
Sara López-Osorio ◽  
Zahady D. Velásquez ◽  
Lisa Segeritz ◽  
...  

Due to its localization in the canine blood stream, Angiostrongylus vasorum is exposed to circulating polymorphonuclear neutrophils (PMN) and the endothelial cells of vessels. NETs release of canine PMN exposed to A. vasorum infective stages (third stage larvae, L3) and early pro-inflammatory immune reactions of primary canine aortic endothelial cells (CAEC) stimulated with A. vasorum L3-derived soluble antigens (AvAg) were analyzed. Expression profiles of the pro-inflammatory adhesion molecules ICAM-1, VCAM-1, P-selectin and E-selectin were analyzed in AvAg-stimulated CAEC. Immunofluorescence analyses demonstrated that motile A. vasorum L3 triggered different NETs phenotypes, with spread NETs (sprNETs) as the most abundant. Scanning electron microscopy confirmed that the co-culture of canine PMN with A. vasorum L3 resulted in significant larval entanglement. Distinct inter-donor variations of P-selectin, E-selectin, ICAM-1 and VCAM-1 gene transcription and protein expression were observed in CAEC isolates which might contribute to the high individual variability of pathological findings in severe canine angiostrongylosis. Even though canine NETs did not result in larval killing, the entanglement of L3 might facilitate further leukocyte attraction to their surface. Since NETs have already been documented as involved in both thrombosis and endothelium damage events, we speculate that A. vasorum-triggered NETs might play a critical role in disease outcome in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 441-441
Author(s):  
Sara E. Meyer ◽  
Emily Orr ◽  
Andrew M. Rogers ◽  
John G Doench ◽  
Bruce J. Aronow ◽  
...  

Abstract Acute myeloid leukemias (AML) are a heterogeneous group of malignancies with distinguishing gene and microRNA (miRNA or miR) expression profiles. In particular, expression of the miR-196 family of miRNA is significantly associated with a large fraction of AML expressing HOX gene signatures (e.g. NPM1c mutant, 11p15 and 11q23 cytogenetic abnormalities) and is prognostically instructive. However, the requirement for miR-196 in hematopoietic cell immortalization, malignant transformation, and leukemogenesis is not understood. We note that miR-196a-1 and miR-196b are both induced upon MLL-AF9 expression, and that miR-196b is a direct MLL-AF9 target gene. To genetically evaluate the necessity of miR-196 for MLL-AF9 tumorigenesis, we varied the number of miR196-encoding alleles and tested the capacity for marrow transformation by MLL-AF9. Specifically, we transduced bone marrow cells from wild-type (WT), miR-196b+/-, and miR-196a-1-/- b-/- double-knockout (DKO) mice with retroviruses expressing MLL-AF9 to limit (miR-196b+/-) or completely eliminate (DKO) miR-196 activity. All groups were immortalized in vitro, as evidenced by the formation of morphologically blast-like colonies, accompanied by serial replating in methylcellulose colony assays. Moreover, we found similar deregulation of HoxA9 and Meis1 expression. Since these are two essential MLL-AF9 target genes, we conclude that the MLL-oncoprotein complex must be functional without miR-196. However in vivo, despite similar levels of engraftment, only mice transplanted with WT or miR-196b+/- MLL-AF9 cells formed leukemia (median latency 70 and 76.5 days, respectively; mice were followed for a total of 135 days). Flow cytometric analyses of leukemic granulocyte-monocyte progenitors (GMP) harvested from miR-196b+/- MLL-AF9 moribund mice displayed a significant increase in CD11b expression as compared to WT MLL-AF9 controls. These miR-196 haploinsufficient and loss-of-function AML models genetically demonstrate that miR-196 activity is critical to fully transform and block differentiation of malignant progenitor cells. Next, we identified AML-relevant miR-196 targets by purifying miR-196b/RNA-target/RISC complexes in human 11q23-translocation AML cells, validating putative targets in luciferase reporter assays, then testing them in an in vivo leukemogenesisshRNA-enrichment screen. Knockdown of several miR-196b targets cooperates with MLL-AF9 to accelerate leukemogenesis, including Cdkn1b. Notably, Cdkn1b- knockdown cKit+ MLL-AF9 splenocytes from moribund mice displayed significantly decreased CD11b expression and increased colony forming potential in vitro. However, simply reducing Cdkn1b in MLL-AF9 leukemia cells did not alter the number of functional leukemia initiating cells (LIC) in an in vivo limiting-dilution analysis (suggesting that Cdkn1b- knockdown does not directly affect LIC biology). Instead, RNA-Seq analyses of Cdkn1b- knockdown MLL-AF9 leukemia cells from moribund animals showed increased expression of proliferation, cell cycle, and survival pathways with decreased expression of myeloid differentiation and apoptotic pathways. Taken together, these data suggest that during leukemogenesis miR-196 activity (through direct targets such as Cdkn1b) provides a leukemia cell fitness advantage, defined by the ability of a malignant cell to intrinsically balance the conflicting programs of proliferation/self-renewal and differentiation, resulting in survival. Given the critical role of miR-196 in MLL-AF9 transformation and leukemia maintenance, we asked whether the miR-196-Cdkn1b pathway might be a point of therapeutic intervention. Indeed, forced overexpression of Cdkn1b significantly diminished colony formation in vitro, and eliminated AML in vivo. Translating this into an RNAi therapeutic, we treated murine MLL-AF9 cells with locked nucleic acid (LNA) sequences designed to specifically block miR-196b binding to its target site in Cdkn1b mRNA. This resulted in not only significant de-repression of p27Kip1 expression, but also reduced MLL-AF9 colony formation in vitro. In sum, we have established a critical genetic requirement for miR-196b in MLL-AF9 leukemogenesis through the balanced control of growth and differentiation, identified a relevant target, and demonstrated therapeutic potential of inhibiting miR-196 binding to this single target gene. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii30-ii31
Author(s):  
Dongjiang Chen ◽  
Son Le ◽  
Tarun Hutchinson ◽  
David Tran

Abstract OBJECTIVES Tumor Treating Fields (TTFields) are approved in combination with temozolomide for newly diagnosed glioblastoma (GBM). TTFields are low-intensity alternating electric fields that are thought to disturb mitotic macromolecules’ assembly. The addition of TTFields resulted in a significant improvement in overall survival. However, most GBM patients eventually develop resistance to TTFields and the mechanism remains unexplored. METHODS Multiple GBM cell lines were treated continuously at clinically approved frequency of 200 kHz using an in vitro TTFields system until cells with relative resistance to the cytotoxic effects of TTFields. A systems approach aided by innovative network ranking computational algorithms were utilized to analyze global gene expression profiles and identify resistance pathways, which were subsequently validated experimentally. RESULTS TTFields-induced chromosomal instability is preserved in resistant cells, indicating that TTFields resistance is mediated through a non-biophysical mechanism. This acquired TTFields resistance phenotype is associated with a transition of GBM cells to a stem-like state as determined by a neurosphere assay, stemness markers such as CD44 and increased tumorigenesis when implanted into mouse brain. Using an innovative computational platform-NETZEN, we methodically dissected this stemness program in resistant cells. 3 networks were found disrupted and all play critical roles in GBM stemness. Mechanistically, Prostaglandin E Receptor 3 (PTGER3) is the top ranked regulator responsible for resistance. PTGER3 is rapidly upregulated both in vitro and in vivo upon exposure to TTFields and further increases with prolonged treatment as resistance sets in. Immunofluorescence staining shows PTGER3’s nuclear translocation along with Lamin A/C disruption in response to TTFields. Pharmacological inhibition of PTGER3 using aspirin or PTGER3-specific inhibitors resensitized or prevent cells becoming resistance to TTFields. CONCLUSIONS We have identified a novel regulator PTGER3 at the apex that plays a critical role in TTFields resistance. This is a potential therapeutic target to reduce resistance to TTFields therapy in GBM.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Yunan Wei ◽  
Hao Zhou ◽  
Anqi Wang ◽  
Lipei Sun ◽  
Mingshu Wang ◽  
...  

The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein play a critical role in the interferon (IFN) response during RNA virus infection. The tripartite motif containing 25 proteins (TRIM25) was reported to modify caspase activation and RIG-I recruitment domains (CARDs) via ubiquitin. These modifications allow TRIM25 to interact with mitochondrial antiviral signaling molecules (MAVs) and form CARD-CARD tetramers. Goose TRIM25 was cloned from gosling lungs, which possess a 1662 bp open reading flame (ORF). This ORF encodes a predicted 554 amino acid protein consisting of a B-box domain, a coiled-coil domain, and a PRY/SPRY domain. The protein sequence has 89.25% sequence identity withAnas platyrhynchosTRIM25, 78.57% withGallus gallusTRIM25, and 46.92% withHomo sapiensTRIM25. TRIM25 is expressed in all gosling and adult goose tissues examined. QRT-PCR revealed that goose TRIM25 transcription could be induced by goose IFN-α, goose IFN-γ, and goose IFN-λ, as well as a35 s polyinosinic-polycytidylic acid (poly(I:C)), oligodeoxynucleotides 2006 (ODN 2006), and resiquimod (R848) in vitro; however, it is inhibited in H9N2 infected goslings for unknown reasons. These data suggest that goose TRIM25 might play a positive role in the regulation of the antiviral immune response.


Sign in / Sign up

Export Citation Format

Share Document