scholarly journals Balancing Proliferation, Differentiation, and Survival: Powerful Genetic and RNAi Technologies Reveal Essential microRNA Signaling for Leukemic Progenitor Cell Fitness

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 441-441
Author(s):  
Sara E. Meyer ◽  
Emily Orr ◽  
Andrew M. Rogers ◽  
John G Doench ◽  
Bruce J. Aronow ◽  
...  

Abstract Acute myeloid leukemias (AML) are a heterogeneous group of malignancies with distinguishing gene and microRNA (miRNA or miR) expression profiles. In particular, expression of the miR-196 family of miRNA is significantly associated with a large fraction of AML expressing HOX gene signatures (e.g. NPM1c mutant, 11p15 and 11q23 cytogenetic abnormalities) and is prognostically instructive. However, the requirement for miR-196 in hematopoietic cell immortalization, malignant transformation, and leukemogenesis is not understood. We note that miR-196a-1 and miR-196b are both induced upon MLL-AF9 expression, and that miR-196b is a direct MLL-AF9 target gene. To genetically evaluate the necessity of miR-196 for MLL-AF9 tumorigenesis, we varied the number of miR196-encoding alleles and tested the capacity for marrow transformation by MLL-AF9. Specifically, we transduced bone marrow cells from wild-type (WT), miR-196b+/-, and miR-196a-1-/- b-/- double-knockout (DKO) mice with retroviruses expressing MLL-AF9 to limit (miR-196b+/-) or completely eliminate (DKO) miR-196 activity. All groups were immortalized in vitro, as evidenced by the formation of morphologically blast-like colonies, accompanied by serial replating in methylcellulose colony assays. Moreover, we found similar deregulation of HoxA9 and Meis1 expression. Since these are two essential MLL-AF9 target genes, we conclude that the MLL-oncoprotein complex must be functional without miR-196. However in vivo, despite similar levels of engraftment, only mice transplanted with WT or miR-196b+/- MLL-AF9 cells formed leukemia (median latency 70 and 76.5 days, respectively; mice were followed for a total of 135 days). Flow cytometric analyses of leukemic granulocyte-monocyte progenitors (GMP) harvested from miR-196b+/- MLL-AF9 moribund mice displayed a significant increase in CD11b expression as compared to WT MLL-AF9 controls. These miR-196 haploinsufficient and loss-of-function AML models genetically demonstrate that miR-196 activity is critical to fully transform and block differentiation of malignant progenitor cells. Next, we identified AML-relevant miR-196 targets by purifying miR-196b/RNA-target/RISC complexes in human 11q23-translocation AML cells, validating putative targets in luciferase reporter assays, then testing them in an in vivo leukemogenesisshRNA-enrichment screen. Knockdown of several miR-196b targets cooperates with MLL-AF9 to accelerate leukemogenesis, including Cdkn1b. Notably, Cdkn1b- knockdown cKit+ MLL-AF9 splenocytes from moribund mice displayed significantly decreased CD11b expression and increased colony forming potential in vitro. However, simply reducing Cdkn1b in MLL-AF9 leukemia cells did not alter the number of functional leukemia initiating cells (LIC) in an in vivo limiting-dilution analysis (suggesting that Cdkn1b- knockdown does not directly affect LIC biology). Instead, RNA-Seq analyses of Cdkn1b- knockdown MLL-AF9 leukemia cells from moribund animals showed increased expression of proliferation, cell cycle, and survival pathways with decreased expression of myeloid differentiation and apoptotic pathways. Taken together, these data suggest that during leukemogenesis miR-196 activity (through direct targets such as Cdkn1b) provides a leukemia cell fitness advantage, defined by the ability of a malignant cell to intrinsically balance the conflicting programs of proliferation/self-renewal and differentiation, resulting in survival. Given the critical role of miR-196 in MLL-AF9 transformation and leukemia maintenance, we asked whether the miR-196-Cdkn1b pathway might be a point of therapeutic intervention. Indeed, forced overexpression of Cdkn1b significantly diminished colony formation in vitro, and eliminated AML in vivo. Translating this into an RNAi therapeutic, we treated murine MLL-AF9 cells with locked nucleic acid (LNA) sequences designed to specifically block miR-196b binding to its target site in Cdkn1b mRNA. This resulted in not only significant de-repression of p27Kip1 expression, but also reduced MLL-AF9 colony formation in vitro. In sum, we have established a critical genetic requirement for miR-196b in MLL-AF9 leukemogenesis through the balanced control of growth and differentiation, identified a relevant target, and demonstrated therapeutic potential of inhibiting miR-196 binding to this single target gene. Disclosures No relevant conflicts of interest to declare.

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 308
Author(s):  
Ying-Ray Lee ◽  
Chia-Ming Chang ◽  
Yuan-Chieh Yeh ◽  
Chi-Ying F. Huang ◽  
Feng-Mao Lin ◽  
...  

Honeysuckle (Lonicera japonica Thunb) is a traditional Chinese medicine (TCM) with an antipathogenic activity. MicroRNAs (miRNAs) are small non-coding RNA molecules that are ubiquitously expressed in cells. Endogenous miRNA may function as an innate response to block pathogen invasion. The miRNA expression profiles of both mice and humans after the ingestion of honeysuckle were obtained. Fifteen overexpressed miRNAs overlapped and were predicted to be capable of targeting three viruses: dengue virus (DENV), enterovirus 71 (EV71) and SARS-CoV-2. Among them, let-7a was examined to be capable of targeting the EV71 RNA genome by reporter assay and Western blotting. Moreover, honeysuckle-induced let-7a suppression of EV71 RNA and protein expression as well as viral replication were investigated both in vitro and in vivo. We demonstrated that let-7a targeted EV71 at the predicted sequences using luciferase reporter plasmids as well as two infectious replicons (pMP4-y-5 and pTOPO-4643). The suppression of EV71 replication and viral load was demonstrated in two cell lines by luciferase activity, RT-PCR, real-time PCR, Western blotting and plaque assay. Furthermore, EV71-infected suckling mice fed honeysuckle extract or inoculated with let-7a showed decreased clinical scores and a prolonged survival time accompanied with decreased viral RNA, protein expression and virus titer. The ingestion of honeysuckle attenuates EV71 replication and related pathogenesis partially through the upregulation of let-7a expression both in vitro and in vivo. Our previous report and the current findings imply that both honeysuckle and upregulated let-7a can execute a suppressive function against the replication of DENV and EV71. Taken together, this evidence indicates that honeysuckle can induce the expression of let-7a and that this miRNA as well as 11 other miRNAs have great potential to prevent and suppress EV71 replication.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Ziwen Pan ◽  
Rongrong Zhao ◽  
Boyan Li ◽  
Yanhua Qi ◽  
Wei Qiu ◽  
...  

Abstract Background Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. Methods CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. Results We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. Conclusions This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yanbo Wang ◽  
Fenghai Ren ◽  
Dawei Sun ◽  
Jing Liu ◽  
BenKun Liu ◽  
...  

BackgroundLung cancer is the leading cause of death from cancer, and lung adenocarcinoma (LUAD) is the most common form. Despite the great advances that has been made in the diagnosis and treatment for LUAD, the pathogenesis of LUAD remains unclear. In this study, we aimed to identify the function of circKEAP1 derived from the exon of KEAP1 in LUAD.MethodsThe expression profiles of circRNAs in LUAD tissues and adjacent non-tumor tissues were analyzed by Agilent Arraystar Human CircRNA microarray. The levels and prognostic values of circKEAP1 in tissues and cancer cell lines were determined by quantitative real-time PCR (qRT-PCR). Subsequently, the effects of circKEAP1 on tumor growth were investigated by functional experiments in vitro and in vivo. Mechanistically, the dual luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation experiments were performed to confirm the interaction between circKEAP1 and miR-141-3p in LUAD.ResultsWe found circKEAP1 was significantly downregulated in LUAD tissues and repressed tumor growth both in vitro and in vivo. Mechanistically, circKEAP1 competitively binds to miR-141-3p and relive miR-141-3p repression for its host gene, which activated the KEAP1/NRF2 signal pathway, and finally suppresses the tumor progress. Our findings suggest that circKEAP1 inhibits LUAD progression through circKEAP1/miR-141-3p/KEAP1 axis and it may serve as a novel method for the treatment of LUAD.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1039
Author(s):  
Hana S. Fukuto ◽  
Gloria I. Viboud ◽  
Viveka Vadyvaloo

Yersinia pestis, the causative agent of plague, has a complex infectious cycle that alternates between mammalian hosts (rodents and humans) and insect vectors (fleas). Consequently, it must adapt to a wide range of host environments to achieve successful propagation. Y. pestis PhoP is a response regulator of the PhoP/PhoQ two-component signal transduction system that plays a critical role in the pathogen’s adaptation to hostile conditions. PhoP is activated in response to various host-associated stress signals detected by the sensor kinase PhoQ and mediates changes in global gene expression profiles that lead to cellular responses. Y. pestis PhoP is required for resistance to antimicrobial peptides, as well as growth under low Mg2+ and other stress conditions, and controls a number of metabolic pathways, including an alternate carbon catabolism. Loss of phoP function in Y. pestis causes severe defects in survival inside mammalian macrophages and neutrophils in vitro, and a mild attenuation in murine plague models in vivo, suggesting its role in pathogenesis. A Y. pestisphoP mutant also exhibits reduced ability to form biofilm and to block fleas in vivo, indicating that the gene is also important for establishing a transmissible infection in this vector. Additionally, phoP promotes the survival of Y. pestis inside the soil-dwelling amoeba Acanthamoeba castellanii, a potential reservoir while the pathogen is quiescent. In this review, we summarize our current knowledge on the mechanisms of PhoP-mediated gene regulation in Y. pestis and examine the significance of the roles played by the PhoP regulon at each stage of the Y. pestis life cycle.


2005 ◽  
Vol 392 (1) ◽  
pp. 241-248 ◽  
Author(s):  
Olivier Loudig ◽  
Glenn A. Maclean ◽  
Naomi L. Dore ◽  
Luong Luu ◽  
Martin Petkovich

Cyp26A1 encodes an RA (retinoic acid)-catabolizing CYP (cytochrome P450) protein that plays a critical role in regulating RA distribution in vivo. Cyp26A1 expression is inducible by RA, and the locus has previously been shown to contain a RARE (RA response element), R1, within the minimal promoter [Loudig, Babichuk, White, Abu-Abed, Mueller and Petkovich (2000) Mol. Endocrinol. 14, 1483–1497]. In the present study, we report the identification of a second functional RARE (R2) located 2.0 kb upstream of the Cyp26A1 transcriptional start site. Constructs containing murine sequences encompassing both R1 and R2 showed that these elements work together to generate higher transcriptional activity upon treatment with RA than those containing R1 alone. Inclusion of R2 also dramatically enhanced the sensitivity of reporter constructs to RA, as even treatment with 10−8 M RA resulted in a 5-fold induction of reporter activity. Mutational analysis identified R2 as the functional element responsible for the increased RA inducibility of promoter constructs. The element was shown to bind RARγ (RA receptor γ)/RXRα (retinoid X receptor α) heterodimers in vitro, and inclusion of nuclear receptors in transfections boosted the transcriptional response. A construct containing both R1 and R2 was used to generate a stable luciferase reporter cell line that can be used as a tool to identify factors regulating Cyp26A1 expression. The analysis of R1 and R2 has led to the proposal that the two elements work synergistically to provide a maximal response to RA and that R2 is an upstream enhancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Zhang ◽  
Zixiang Liu ◽  
Yingchuang Tang ◽  
Xiaofeng Shao ◽  
Xi Hua ◽  
...  

Chordoma is a relatively rare malignant bone tumor with high local recurrence. To date, the mechanism remains unclear. lncRNAs play a pivotal role in tumorigenesis by acting as competitive endogenous RNAs of microRNAs. However, the biological role of lncRNA is still unclear in chordoma. In this research, our aim is to investigate the roles and regulation mechanisms of lncRNA NONHSAT114552 in chordoma development. The expression level of NONHSAT114552 and miR-320d in chordoma tissues was determined by qRT-PCR. Meantime, the correlation between NONHSAT114552 and clinical prognosis was also studied. Bioinformatics analysis and luciferase reporter assays were used to verify the relationship between NONHSAT114552 and miR-320d, and between miR-320d and Neuropilin 1 (NRP1). In addition, effects of NONHSAT114552 on chordoma cells (U-CH1 and U-CH2) proliferation and invasion and its regulation on miR-320d were also evaluated. Furthermore, the influences of NONHSAT114552/miR-320d/NRP1 axis on chordoma tumorigenesis were investigated in vivo. NONHSAT114552 was overexpressed while miR-320d was down-regulated in chordoma tissue compared to fetal nucleus pulposus. Kaplan-Meier survival analysis showed that NONHSAT114552 overexpression was associated with patients’ poor prognosis. Knockdown of NONHSAT114552 significantly suppressed chordoma cell proliferation and invasion. In vitro studies confirmed that NONHSAT114552 acted as ceRNA to regulate NRP1 by directly sponging miR-320d, thus facilitating chordoma cell proliferation and invasion. In vivo study demonstrated that NONHSAT114552 moderated chordoma growth by sponging miR-320d to regulating NRP1. Our findings indicate that lncRNA NONHSAT114552 exhibits a critical role in the tumorigenesis and development of chordoma and it may become one potential prognostic marker and therapeutic target for this disease. .


2019 ◽  
Vol 23 (3) ◽  
pp. 437-448 ◽  
Author(s):  
Zizhen Zhang ◽  
Chaojie Wang ◽  
Yeqian Zhang ◽  
Site Yu ◽  
Gang Zhao ◽  
...  

Abstract Background Circular RNAs (circRNAs) as a novel subgroup of non-coding RNAs act a critical role in the pathogenesis of gastric cancer (GC). However, the underlying mechanisms by which hsa_circ_0003855 (circDUSP16) contributes to GC are still undocumented. Materials The differentially expressed circRNAs were identified by GEO database. The association of circDUSP16 or miR-145-5p expression with clinicopathological features and prognosis in GC patients was analyzed by FISH and TCGA-seq data set. Loss- and gain-of-function experiments as well as a xenograft tumor model were performed to assess the role of circDUSP16 in GC cells. circDUSP16-specific binding with miR-145-5p was confirmed by bioinformatic analysis, luciferase reporter, and RNA immunoprecipitation assays. Results The expression levels of circDUSP16 were markedly increased in GC tissue samples and acted as an independent prognostic factor of poor survival in patients with GC. Knockdown of circDUSP16 repressed the cell viability, colony formation, and invasive potential in vitro and in vivo, but ectopic expression of circDUSP16 reversed these effects. Moreover, circDUSP16 possessed a co-localization with miR-145-5p in the cytoplasm, and acted as a sponge of miR-145-5p, which attenuated circDUSP16-induced tumor-promoting effects and IVNS1ABP expression in GC cells. MiR-145-5p had a negative correlation with circDUSP16 expression and its low expression was associated with poor survival in GC patients. Conclusions CircDUSP16 facilitates the tumorigenesis and invasion of GC cells by sponging miR-145-5p, and may provide a novel therapeutic target for GC.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1334-1334
Author(s):  
Robert W. Georgantas ◽  
Richard Hildreth ◽  
Jonathan Alder ◽  
Carlo M. Croce ◽  
George A. Calin ◽  
...  

Abstract MicroRNAs (miRs) are a recently realized class of epigenetic elements which block translation of mRNA to protein. MicroRNAs have been shown to control cellular metabolism, apoptosis, differentiation and development in numerous organisms including drosophila, rat, mouse, and humans. Recently, miRs have been implicated in the control of hematopoiesis. Importantly, both aberrant expression and deletion of miRs are have been associated with the development of various cancers. In a previous study, we determined the gene expression profiles of HSC-enriched, HPC-enriched, and total CD34+ cells from human PBSC, BM, and CB. One rather surprising finding from this study was that virtually all of “hematopoietic important” genes were expressed at virtually identical levels within all populations examined. One of our hypotheses to explain this phenomena was that miRs may control differentiation by controlling protein expression from these “hematopoietic” RNAs. To examine the possible role of miRs in normal hematopoiesis and their relation to the HSPC transcriptome, we used mir-miroarrays to determine the miR expression profile of primary normal human mobilized blood and bone marrow CD34+ hematopoietic stem-progenitor cells (HSPCs). We have combined this miR data with (1) our extensive mRNA expression data obtained previously for CD34+ HSPCs, CD34+/CD38−/Lin- stem cell-enriched, CD34+/CD38+/Lin+ progenitor-enriched populations, and total CD34+ HSPC (Georgantas, Cancer Research 64:4434) and (2) miR target predictions from various published algorithms. Combining these datasets into one integrated database allowed us to bioinformaticly examine the global interaction of HSPC mRNAs and miRs during hematopoiesis. The 3′UTR sequences from many of these “hematopoietic” mRNA were cloned behind a luciferase reporter. K562 cells were transfected with these luc-3′UTR constructs, confirmating that expression of many important hematopoietic proteins are controlled by miRs. Based on our bioinformatic and protein expression studies, we present a global in silico model by which microRNAs control and direct hematopoietic differentiation. Actual in vitro and in vivo studies addressing the action of specific miRs in hematopoietic differentiation are presented in separate abstracts.


Author(s):  
Hongbo Sun ◽  
Zhifu Zhang ◽  
Wei Luo ◽  
Junmin Liu ◽  
Ye Lou ◽  
...  

Acute lymphoblastic leukemia (ALL) is the most prevalent of pediatric cancers. Neuroepithelial cell-transforming 1 (NET1) has been associated with malignancy in a number of cancers, but the role of NET1 in ALL development is unclear. In the present study, we investigated the effect of NET1 gene in ALL cell proliferation and chemoresistance. We analyzed GEO microarray data comparing bone marrow expression profiles of pediatric B-cell ALL samples and those of age-matched controls. MTT and colony formation assays were performed to analyze cell proliferation. ELISA assays, Western blot analyses, and TUNEL staining were used to detect chemoresistance. We confirmed that NET1 was targeted by miR-206 using Western blot and luciferase reporter assays. We identified NET1 gene as one of the most significantly elevated genes in pediatric B-ALL. MTT and colony formation assays demonstrated that NET1 overexpression increases B-ALL cell proliferation in Nalm-6 cells. ELISA assays, Western blot analyses, and TUNEL staining showed that NET1 contributes to ALL cell doxorubicin resistance, whereas NET1 inhibition reduces resistance. Using the TargetScan database, we found that several microRNAs (miRNAs) were predicted to target NET1, including microRNA-206 (miR-206), which has been shown to regulate cancer development. To determine whether miR-206 targets NET1 in vitro, we transfected Nalm-6 cells with miR-206 or its inhibitor miR-206-in. Western blot assays showed that miR-206 inhibits NET1 expression and miR-206-in increases NET1 expression. Luciferase assays using wild-type or mutant 3′-untranslated region (3′-UTR) of NET1 confirmed these findings. We ultimately found that miR-206 inhibits B-ALL cell proliferation and chemoresistance induced by NET1. Taken together, our results provide the first evidence that NET1 enhances proliferation and chemoresistance in B-ALL cells and that miR-206 regulates these effects by targeting NET1. This study therefore not only contributes to a greater understanding of the molecular mechanisms underlying B-ALL progression but also opens the possibility for developing curative interventions.


Sign in / Sign up

Export Citation Format

Share Document